首页> 中文期刊> 《计算机工程与应用》 >结合K近邻的改进密度峰值聚类算法

结合K近邻的改进密度峰值聚类算法

     

摘要

Concerning the problem that Density Peaks Clustering(DPC)algorithm has poor performance on the datasets with high dimension,noise and complex structure,an Improved Density Peaks Clustering Algorithm(IDPCA)combining K-Nearest Neighbors is proposed.Firstly,a new definition of local density is proposed to describe the distribution of the spatial samples.Secondly,the concept of core point is introduced and a global search allocation strategy is designed based on K-Nearest Neighbors thought to classify the unassigned K-Nearest Neighbors of core points correctly,which acceler-ates the clustering speed.Thirdly,a statistical learning allocation strategy is developed,by using the weighted K-Nearest Neighbors'information of the unassigned points to calculate the probability of them being assigned to each local cluster, which improves the clustering quality effectively.Finally,compared with DPC and other three classical clustering methods on 21 test datasets including synthetic and real-world datasets, the experimental results show that IDPCA outperforms them on four different evaluation indexes.%针对密度峰值聚类算法(DPC)在处理维数较高、含噪声及结构复杂数据集时聚类性能不佳问题,提出一种结合K近邻的改进密度峰值聚类算法(IDPCA).该算法首先给出新的局部密度度量方法来描述每个样本在空间中的分布情况,然后引入核心点的概念并结合K近邻思想设计了全局搜索分配策略,通过不断将核心点的未分配K近邻正确归类以加快聚类速度,进而提出一种基于K近邻加权的统计学习分配策略,利用剩余点的K近邻加权信息来确定其被分配到各局部类的概率,有效提高了聚类质量.实验结果表明,IDPCA算法在21个典型的测试数据集上均有良好的适用性,而在与DPC算法及另外3种典型聚类算法的性能指标对比上,其优势更为明显.

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号