首页> 中文期刊> 《计算机应用与软件》 >基于人工蜂群算法和XGBoost的网络入侵检测方法研究

基于人工蜂群算法和XGBoost的网络入侵检测方法研究

     

摘要

为了降低网络入侵检测系统的虚警率,提出一种混合式网络入侵检测方法,将人工蜂群(ABC)算法用于特征提取,XGBoost算法用于特征分类和评价.选择和定义不同的场景和攻击类型,并设计混合式网络拓扑;对预处理后的数据,采用ABC算法进行特征提取,利用XGBoost算法将需要评价的特征进行分类;得到特征的最优子集,利用这些特征完成网络异常检测.在多个公开数据集上的实验结果表明,该混合方法在准确度和检测率方面优于其他方法,且其时间复杂度和空间复杂度较低,表现出较高的检测效率.

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号