首页> 中文期刊> 《计算机应用与软件》 >基于全局和局部回归的因果定向改进算法

基于全局和局部回归的因果定向改进算法

     

摘要

从观测数据中探索和发现蕴含在变量间的因果关系是大数据时代的基本任务之一,它将在未来各种数据驱动应用中发挥关键作用.推断观测数据间因果关系的方向是此任务的一类基础问题.最近研究表明基于最小描述长度MDL(minimum description length)的全局和局部回归(GLR)算法具有较高的推断准确率及较广的适用性.然而,在GLR模型中由于冗余模型的存在而严重限制了该算法的效率.为避免模型冗余,根据模型的不同特征采取分别构建GLR模型的方法,并在此基础上提出一个改进的用于因果定向的ISLOPE算法.实验结果表明,在保持原算法准确率近似不变的前提下,该算法有效地节约了运行时间,进而提升了算法效率.

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号