首页> 中文期刊> 《计算机应用与软件》 >基于梯度动力学的协同神经网络学习算法的改进

基于梯度动力学的协同神经网络学习算法的改进

     

摘要

本文在研究协同神经网络梯度动力学过程的基础上,针对学习过程收敛速度缓慢的缺点,提出了一种改进的基于梯度动力学的协同神经网络学习算法.该算法分析了非平衡注意参数对学习过程的影响,简化了初始伴随向量的选取;并引入最优化理论,将该问题归结为求解非线性最优化问题,用共轭梯度法代替梯度下降法,加快了学习过程的收敛.通过对汉字图像库和人脸图像库的图像识别实验,表明该算法较之其他学习算法有较高的识别率,并能较快的收敛到极小值.

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号