首页> 中文期刊> 《计算机应用与软件》 >一种基于PLSA和AGPSO的文本属性约简方法及其分类器

一种基于PLSA和AGPSO的文本属性约简方法及其分类器

     

摘要

将概率潜在语义分析PLSA(probabilistic latent semantic analysis)和自适应广义粒子群算法AGPSO(adaptive general particle swarm optimization)相结合,提出了一种文本特征降维新方法,进而实现了基于PLSA和AGPSO的网页分类器.采用概率潜在语义分析将语义关系体现在VSM (Vector Space Model) 中, 通过EM算法有效地降低向量空间的维数;设计交叉操作模拟粒子飞行速度的变化,变异操作保持种群的多样性,同时引入自适应策略动态调整变异概率,以求最优特征子集.在用自适应广义粒子群算法约简前,先用概率潜在语义分析对原始特征空间约简,得到中间特征子集,然后再用自适应广义粒子群算法继续约简,充分发挥两者的优势.实验表明此算法能有效降低文本维数,提高分类精度.

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号