首页> 中文期刊> 《计算机应用与软件》 >基于Hermite神经网络的混沌时间序列预测

基于Hermite神经网络的混沌时间序列预测

     

摘要

针对混沌时间序列的混沌性,提出一种改进的相空间重构方法——交集寻优法;针对传统的BP神经网络、RBF神经网络及AR模型对混沌时间序列预测效率和预测精度较低的缺点,提出两种不同的Hermite神经网络预测模型.以四阶蔡氏电路为模型,结合粒子群算法建立预测模型.仿真结果表明,利用交集寻优法进行相空间重构能很好地保留原系统的动力学特性,证实了该方法的有效性;Hermite神经网络较传统的预测模型精度更高,便于基于粒子群算法的Hermite神经网络预测方法的推广和应用.

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号