首页> 中文期刊> 《计算机应用与软件》 >基于时间效应与隐语义模型的高校图书馆的个性化推荐研究

基于时间效应与隐语义模型的高校图书馆的个性化推荐研究

     

摘要

In order to select quickly in the mass of books, aiming at the characteristics that university readers have the same knowledge background in different stages of learning, this paper proposed a fusion algorithm based on matrix decomposition of latent factor model and time effect,and made a personalized book recommendation for university books. The algorithm firstly used the stochastic gradient descent method to solve the user -item scoring matrix.Second, an improved solution was proposed to the problem of cold start.Finally,the accuracy of the proposed algorithm was verified by the mean absolute error MAE and the root mean square error RMSE.The results of a large number of experiments verified the feasibility and effectiveness of the algorithm.%为了在海量书籍中快速选择,针对高校读者同一学科在不同学习阶段知识背景相似的特点,提出一种建立基于矩阵分解的隐语义模型与时间效应的融合算法,对高校图书进行个性化图书推荐.该算法运用随机梯度下降法求解用户-项目评分矩阵;针对冷启动问题提出一种改进的解决策略;通过评价指标平均绝对误差MAE与均方根误差RMSE验证该算法推荐的准确性.通过大量实验结果验证了该算法的可行性和有效性.

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号