首页> 中文期刊> 《计算机应用研究》 >基于WBLDA的学术文献摘要主题聚类

基于WBLDA的学术文献摘要主题聚类

     

摘要

为使科研人员节省时间,高效阅读学术文献信息,提出一种学术文献摘要的主题聚类模型——优化主题数目作者层主题聚类模型(WBLDA).首先在预处理阶段,自定义符合学术文献摘要特点的分词词典和停用词词典,解决学术文献摘要分词不准确的问题;在特征提取阶段,提出增大词频特征提取方法(ITF-IDF),使用词频放大法来增大词频,弱化文本长度对特征权重的影响,提取出更加符合学术文献摘要方向的特征词;最后,针对传统主题模型忽略作者这一重要属性的缺点,在主题聚类模型中引入学术文献摘要的作者信息,构建文档—主题+作者—词的WBLDA模型,同时使用贝叶斯准则优化主题聚类模型的主题数.通过对学术文献摘要数据集仿真实验结果表明,与TF-IDF相比,ITF-IDF方法的特征提取准确率更高;与LDA相比,WBLDA模型的聚类纯度和F-score值也更高,选择出的主题更加准确,更能代表摘要的学术方向.

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号