首页> 中文期刊> 《计算机应用研究》 >基于深度学习的图像拼接算法研究综述

基于深度学习的图像拼接算法研究综述

     

摘要

图像拼接是计算机视觉和计算机图形学中的一个重要分支,在三维成像等方面具有广泛的应用。相较于传统基于特征点检测的图像拼接框架,基于深度学习的图像拼接框架具有更强的场景泛化表现。目前虽然关于基于深度学习的图像拼接研究成果众多,但仍缺少相应研究的全面分析和总结。为了便于该领域后续工作的开展,梳理了该领域近10年的代表性成果。在对传统拼接方法与基于深度学习的图像拼接方法对比的基础上,从图像拼接研究领域中的单应性估计、图像拼接和图像矩形化三个子问题出发,进行了学习策略及模型架构设计、经典模型回顾、数据集等方面的整理与分析。总结了基于深度学习的图像拼接研究方法的一些特点和当前该领域的研究现状,并对未来研究前景进行了展望。

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号