首页> 中文期刊> 《物理学报》 >用于透明平板平行度和均匀性测量的单元件干涉仪

用于透明平板平行度和均匀性测量的单元件干涉仪

         

摘要

The transparent plates (such as organic glass, plastic plate) are widely used in the construction industry, high-tech products and scientific research applications, and its parallelism and uniformity measurement in the manufacture and quality control become more and more inevitable. Interferometer is a label-free, high-precision, and high-efficient device that can be used in many fields. According to a single-element interferometer, we demonstrate a measurement for the parallelism and uniformity of transparent medium. Beam-splitter cube is a key component. Half of plane wave laser source passes through the measured medium and the remaining half directly passes through the air, then these two halves with different optical paths meet in the beam-splitter cube. The parallelism or uniformity is determined by calculating interference fringe shift number during rotating the measured sample. The coherent beam is divided into two parts by a beam-splitter, one passes through the lens and then arrives at a photoelectric counter, and the other arrives at the observation plane of the charge-coupled device. The photoelectric counter is used to count the integer part of fringe shift number during rotating the sample;and the decimal part can be detected by calculating the phase difference of the two interferograms captured before and after rotation. The measurement principle of the proposed device is analyzed in detail, and the numerical simulations of the fringe shift number and the gray level changing with the sample rotation angle, the thickness and the refractive index of the sample are carried out. The simulation results show that the bigger the rotation angle, thickness and refractive index of the sample, the greater the fringe shift number will be. Therefore, the measurement accuracy can be improved by increasing the rotation angle and the thickness of the sample. In addition, we also simulate the measurement processes of two kinds of samples, which are unparallel and inhomogeneous transparent plates. The simulation results prove the feasibility and high accuracy of the proposed method. Finally, the optical experiment is conducted to demonstrate the practicability of the present device. The parallelism of a cuvette used for more than one year, is tested by our device. The results show that the difference in thickness between the cuvettes is on a micron scale, the peak-valley (PV) value is 9.92 μm, and the root mean square (RMS) value is 2.2 μm. And the difference between the contrast test results and the results from the proposed method is very small, the PV value is 0.569 μm, and the RMS value is 0.131 μm. The stability and repeatability of the proposed setup are tested in the experimental condition. The mean value and standard deviation of the fringe shift number during 30 min are 0.0012 and 0.0008, respectively. These results further testify the high accuracy and stability of our method. In conclusion, the performance of our measurement method is demonstrated with numerical simulation and optical experiment.%提出了一种基于单元件干涉的用于检测透明介质平整度和均匀性的干涉仪.该干涉仪的核心元件是一个菱形分光棱镜.激光光源的平面波光束的一半光束透过待测样品,另一半光束直接透过空气,然后分别入射到菱形分光棱镜的两垂直面并在分光面相遇、相干.通过旋转待测样品改变相干的两束光光程差,从而使干涉条纹发生移动.形成的相干光被分光板分成两束,一束进入光电探测器用于探测干涉条纹移动数的整数部分,另一束则进入电荷耦合探测器用于采集干涉条纹图来计算干涉条纹移动数的小数部分.通过计算条纹移动数反推出光程差的变化量,再结合折射率或样品厚度信息则可以计算出样品厚度或折射率的分布,从而检测出透明介质的平行度和均匀性.模拟仿真和光学实验均证明了本方法的可行性、准确性和稳定性.

著录项

  • 来源
    《物理学报》 |2017年第6期|390-400|共11页
  • 作者单位

    四川大学电子信息学院激光微纳工程研究所, 成都 610064;

    四川大学电子信息学院激光微纳工程研究所, 成都 610064;

    四川大学电子信息学院激光微纳工程研究所, 成都 610064;

    四川大学电子信息学院激光微纳工程研究所, 成都 610064;

    四川大学电子信息学院激光微纳工程研究所, 成都 610064;

    华北光电技术研究所, 北京 100015;

  • 原文格式 PDF
  • 正文语种 chi
  • 中图分类
  • 关键词

    干涉测量法; 相位测量; 图像处理; 折射率;

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号