首页> 外文学位 >Bayesian, Frequentist, and Information Geometry Approaches to Parametric Uncertainty Quantification of Classical Empirical Interatomic Potentials
【24h】

Bayesian, Frequentist, and Information Geometry Approaches to Parametric Uncertainty Quantification of Classical Empirical Interatomic Potentials

机译:用于经典经验原子间势的参数不确定性量化的贝叶斯、频率和信息几何方法

获取原文
获取原文并翻译 | 示例

摘要

Uncertainty quantification (UQ) is an increasingly important part of materials modeling. In this paper, we consider the problem of quantifying parametric uncertainty in classical empirical interatomic potentials (IPs). Previous work based on local sensitivity analysis using the Fisher Information has shown that IPs are sloppy, i.e., are insensitive to coordinated changes of many parameter combinations. We confirm these results and further explore the non-local statistics in the context of sloppy model analysis using both Bayesian (MCMC) and Frequentist (profile likelihood) methods. We interface these tools with the Knowledgebase of Interatomic Models (OpenKIM) and study three models based on the Lennard-Jones, Morse, and Stillinger-Weber potentials, respectively. We confirm that IPs have global properties similar to those of sloppy models from fields such as systems biology, power systems, and critical phenomena. These models exhibit a low effective dimensionality in which many of the parameters are unidentifiable, i.e., do not encode any information when fit to data. Because the inverse problem in such models is ill-conditioned, unidentifiable parameters present challenges for traditional statistical methods. In the Bayesian approach, Monte Carlo samples can depend on the choice of prior in subtle ways. In particular, they often "evaporate" parameters into high-entropy, sub-optimal regions of the parameter space. For profile likelihoods, confidence regions are extremely sensitive to the choice of confidence level. To get a better picture of the relationship between data and parametric uncertainty, we sample the Bayesian posterior at several sampling temperatures and compare the results with those of Frequentist analyses. In analogy to statistical mechanics, we classify samples as either energy-dominated, i.e., characterized by identifiable parameters in constrained (ground state) regions of parameter space, or entropy-dominated, i.e., characterized by unidentifiable (evaporated) parameters. We complement these two pictures with information geometry to illuminate the underlying cause of this phenomenon. In this approach, a parameterized model is interpreted as a manifold embedded in the space of possible data with parameters as coordinates. We calculate geodesics on the model manifold and find that IPs, like other sloppy models, have bounded manifolds with a hierarchy of widths, leading to low effective dimensionality in the model. We show how information geometry can motivate new, natural parameterizations that improve the stability and interpretation of UQ analysis and further suggest simplified, less-sloppy models.
机译:不确定性量化 (UQ) 是材料建模中越来越重要的部分。在本文中,我们考虑了量化经典经验原子间势 (IP) 中的参数不确定性的问题。先前使用 Fisher 信息进行局部敏感性分析的工作表明,IP 是草率的,即对许多参数组合的协调变化不敏感。我们确认了这些结果,并使用贝叶斯 (MCMC) 和频率主义 (剖面似然) 方法在草率模型分析的背景下进一步探索非局部统计。我们将这些工具与原子间模型知识库 (OpenKIM) 连接起来,并分别研究了基于 Lennard-Jones、Morse 和 Stillinger-Weber 势的三个模型。我们确认 IP 具有类似于系统生物学、电力系统和关键现象等领域的草率模型的全局属性。这些模型表现出低有效维数,其中许多参数是无法识别的,即在拟合数据时不编码任何信息。由于此类模型中的逆问题是病态的,因此无法识别的参数对传统统计方法提出了挑战。在贝叶斯方法中,蒙特卡洛样本可以以微妙的方式依赖于先验的选择。特别是,它们经常将参数 “蒸发” 到参数空间的高熵、次优区域。对于剖面似然,置信区对置信水平的选择极为敏感。为了更好地了解数据和参数不确定性之间的关系,我们在几个采样温度下对贝叶斯后验进行采样,并将结果与 Frequentist 分析的结果进行比较。与统计力学类似,我们将样本分为能量主导的,即以参数空间的约束(基态)区域中的可识别参数为特征的样本,或熵为主导的样本,即以不可识别(蒸发)的参数为特征。我们用信息几何学补充这两张图片,以阐明这种现象的根本原因。在这种方法中,参数化模型被解释为嵌入在可能数据空间中的流形,参数作为坐标。我们在模型流形上计算测地线,发现 IP 和其他草率的模型一样,具有具有宽度层次结构的有界流形,导致模型中的有效维数较低。我们展示了信息几何如何激发新的、自然的参数化,从而提高 UQ 分析的稳定性和解释,并进一步提出简化、不那么草率的模型。

著录项

  • 作者

    Kurniawan, Yonatan.;

  • 作者单位

    Brigham Young University.;

    Brigham Young University.;

    Brigham Young University.;

  • 授予单位 Brigham Young University.;Brigham Young University.;Brigham Young University.;
  • 学科 Propagation.;Materials science.;Bayesian analysis.;Systems stability.;Eigenvectors.;Entropy.
  • 学位
  • 年度 2021
  • 页码 81
  • 总页数 81
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Propagation.; Materials science.; Bayesian analysis.; Systems stability.; Eigenvectors.; Entropy.;

    机译:传播。;材料科学。;贝叶斯分析。;系统稳定性。;特征向量。;熵。;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号