首页> 外文学位 >Design and Simulation of Mobile Robot with Slam and Path Planning Algorithm
【24h】

Design and Simulation of Mobile Robot with Slam and Path Planning Algorithm

机译:基于 Slam 和路径规划算法的移动机器人设计与仿真

获取原文
获取原文并翻译 | 示例

摘要

In this thesis, the simulation-based investigation of a Turtlebot mobile robot in an environment created in ROS using methods such as an Occupancy Grid SLAM (Simultaneous Localization and Mapping) and performed navigation using RRT* path planning. Also, the ability of an autonomous robot to navigate in conflict situations from one point to another in an unknown environment has been addressed while assuring collision avoidance. The navigation of the autonomous robot in an environment with random and live obstacles is one of the main challenges faced by mobile robot technology. Robotic navigation path planning is an axial problem because it is complex and time-consuming for the robot to select an ideal path. Before starting the navigation, the robot must achieve self-localization in an unknown environment known as SLAM.Simultaneous Localization and Mapping (SLAM) and path planning are the main factors that decide efficient path planning for an autonomous robot. SLAM problems can be solved using various methods but mainly rely on the sensors' accuracy, such as camera, LIDAR, etc. Even after successfully mapping the environment, navigating through the obstacles to find the optimum path to a goal location is challenging. In this simulation, a map is constructed using Gazebo software. Then, localization of the robot on the map is achieved using the LIDAR sensor data and using the Occupancy grid SLAM method while controlling the robot manually. The next step was to develop the ROS nodes needed for navigation using python language, which establishes the communication between the client and the navigation server. Different ROS nodes required to perform the navigation are initiated by creating the navigation launch file. The RRT* algorithm is implemented to find the global path from an initial location to a goal location. The navigation of the mobile robot is performed, and the data obtained during the navigation are stored in a ROS bag file. These data are then plotted to understand the robot's behavior under different conditions.
机译:在本论文中,使用占用网格 SLAM(同时定位和地图构建)等方法在 ROS 中创建的环境中对 Turtlebot 移动机器人进行基于模拟的调查,并使用 RRT* 路径规划执行导航。此外,自主机器人在未知环境中从一个点导航到另一个点的冲突情况的能力也得到了解决,同时确保了碰撞避免。自主机器人在具有随机和实时障碍物的环境中导航是移动机器人技术面临的主要挑战之一。机器人导航路径规划是一个轴向问题,因为机器人选择理想路径既复杂又耗时。在开始导航之前,机器人必须在称为 SLAM 的未知环境中实现自定位。同步定位和地图构建 (SLAM) 和路径规划是决定自主机器人有效路径规划的主要因素。SLAM 问题可以使用多种方法解决,但主要取决于传感器的准确性,例如摄像头、LIDAR 等。即使在成功绘制环境地图后,穿越障碍以找到通往目标位置的最佳路径也是一项挑战。在此模拟中,使用 Gazebo 软件构建了一张地图。然后,使用 LIDAR 传感器数据和 Occupancy grid SLAM 方法实现机器人在地图上的定位,同时手动控制机器人。下一步是使用 python 语言开发导航所需的 ROS 节点,该语言在客户端和导航服务器之间建立通信。通过创建导航启动文件来启动执行导航所需的不同 ROS 节点。实施 RRT* 算法以查找从初始位置到目标位置的全局路径。执行移动机器人的导航,导航过程中获取的数据存储在 ROS 袋文件中。然后绘制这些数据以了解机器人在不同条件下的行为。

著录项

  • 作者

    Harish, Arjun.;

  • 作者单位

    Texas A&M University - Kingsville.;

    Texas A&M University - Kingsville.;

    Texas A&M University - Kingsville.;

  • 授予单位 Texas A&M University - Kingsville.;Texas A&M University - Kingsville.;Texas A&M University - Kingsville.;
  • 学科 Mechanical engineering.;Robotics.
  • 学位
  • 年度 2021
  • 页码 74
  • 总页数 74
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Mechanical engineering.; Robotics.;

    机译:机械工程。;机器人。;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号