首页> 外文学位 >Demonstration of Visible and Near Infrared Raman Spectrometers and Improved Matched Filter Model for Analysis of Combined Raman Signals
【24h】

Demonstration of Visible and Near Infrared Raman Spectrometers and Improved Matched Filter Model for Analysis of Combined Raman Signals

机译:可见光和近红外拉曼光谱仪的演示以及用于分析组合拉曼信号的改进匹配滤光片模型

获取原文
获取原文并翻译 | 示例

摘要

Raman spectroscopy is a powerful analysis technique that has found applications in fields such as analytical chemistry, planetary sciences, and medical diagnostics. Recent studies have shown that analysis of Raman spectral profiles can be greatly assisted by use of computational models with achievements including high accuracy pure sample classification with imbalanced data sets and detection of ideal sample deviations for pharmaceutical quality control. The adoption of automated methods is a necessary step in streamlining the analysis process as Raman hardware becomes more advanced. Due to limits in the architectures of current machine learning based Raman classification models, transfer from pure to mixed sample analysis is not possible. This thesis presents the design, fabrication, and data collected from two different Raman spectrometers, a visible light system operating at 532 nm and a near infrared system operating at 785 nm. For each system, the optical design and operational theory of the main components will be explained. Data collected on each system will then be presented. Additionally, a learned matched filter computer model was developed to analyze Raman line profiles and can detect the signatures of multiple materials in a single data point. The presented model incorporates machine learning theory into the traditional matched filter model for higher probability of detection and much reduced probability of false alarm. The structure and operation of the model will be explained, and analysis of both real and simulated mixed-sample Raman spectra will be presented.
机译:拉曼光谱是一种强大的分析技术,已应用于分析化学、行星科学和医学诊断等领域。最近的研究表明,使用计算模型可以极大地帮助分析拉曼光谱图,其成就包括数据集不平衡的高精度纯样品分类和检测用于药物质量控制的理想样品偏差。随着拉曼硬件变得越来越先进,采用自动化方法是简化分析过程的必要步骤。由于当前基于机器学习的拉曼分类模型架构的限制,无法从纯样品分析转移到混合样品分析。本论文介绍了从两种不同的拉曼光谱仪(工作波长为 532 nm 的可见光系统和工作波长为 785 nm 的近红外系统)的设计、制造和收集的数据。对于每个系统,将解释主要组件的光学设计和操作理论。然后将显示在每个系统上收集的数据。此外,还开发了一种学习到的匹配滤光片计算机模型来分析拉曼线剖面,并且可以在单个数据点中检测多种材料的特征。所提出的模型将机器学习理论整合到传统的匹配滤波器模型中,以提高检测概率并大大降低误报概率。将解释模型的结构和操作,并介绍真实和模拟混合样品拉曼光谱的分析。

著录项

  • 作者单位

    Old Dominion University.;

    Old Dominion University.;

    Old Dominion University.;

  • 授予单位 Old Dominion University.;Old Dominion University.;Old Dominion University.;
  • 学科 Artificial intelligence.;Optics.;Materials science.
  • 学位
  • 年度 2019
  • 页码 76
  • 总页数 76
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Artificial intelligence.; Optics.; Materials science.;

    机译:人工智能。;光学。;材料科学。;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号