首页> 外文学位 >Group-aware stream filtering.
【24h】

Group-aware stream filtering.

机译:组感知流过滤。

获取原文
获取原文并翻译 | 示例

摘要

Recent years have witnessed a new class of monitoring applications that need to continuously collect information from remote data sources. Those data sources, such as web click-streams, stock quotes, and sensor data, are often characterized as fast-rate high-volume "streams". Distributed stream-processing systems are thus designed to efficiently use system resources to serve the data-acquisition needs of the applications. Most of the state-of-the-art stream-processing systems assume an Ethernet-based network whose bandwidth is abundant, and focus on mechanisms to save computational power and memory. For applications involving wireless networks, particularly multi-hop mesh networks, we recognize that the most limiting factor in efficiently processing streams lies in the network's highly constrained bandwidth. Hence, this dissertation proposes a group-aware stream filtering approach that saves bandwidth at the cost of increased CPU time, for low-bandwidth data-streaming systems.;This approach, used together with multicasting, exploits two overlooked properties of monitoring applications: (1) many of them can tolerate some degree of "slack" in their data quality requirements, and (2) there may exist multiple subsets of the source data satisfying the quality needs of an application. We can thus choose the "best alternative" subset for each application to maximize the data overlap within the group to best benefit from multicasting. After proving the problem NP-hard, we introduce a suite of heuristics-based algorithms that ensure data quality, specifically data granularity and timeliness, in addition to preserving network bandwidth.;Our framework for group-aware stream filtering is extensible and supports a diverse range of filtering needs of monitoring applications. We evaluate this approach with a prototype system based on real-world data sets. The results show that quality-managed group-aware filtering is effective in trading CPU time for bandwidth savings, compared with self-interested stream filtering. We also evaluate the effect of each algorithm on temporal freshness of the data. Finally, we discuss other application realms that might benefit from group-aware stream filtering.
机译:近年来,见证了一种新型的监视应用程序,它们需要不断地从远程数据源收集信息。那些数据源,例如Web点击流,股票报价和传感器数据,通常被称为快速高流量“流”。因此,分布式流处理系统被设计为有效地使用系统资源来满足应用程序的数据采集需求。大多数最先进的流处理系统都采用带宽丰富的基于以太网的网络,并且着重于节省计算能力和内存的机制。对于涉及无线网络(尤其是多跳网状网络)的应用,我们认识到有效处理流的最大限制因素在于网络的高度受限带宽。因此,本文针对低带宽数据流系统提出了一种基于群的流过滤方法,以增加CPU时间为代价来节省带宽。;这种方法与多播一起使用,利用了监视应用程序的两个被忽略的特性: 1)他们中的许多人可以忍受其数据质量要求的某种程度的“松弛”,并且(2)可能存在满足应用程序质量需求的源数据的多个子集。因此,我们可以为每个应用程序选择“最佳替代”子集,以最大化组内的数据重叠,从而从多播中获得最大收益。在证明了NP难问题之后,我们引入了一套基于启发式的算法,可确保数据质量,尤其是数据粒度和及时性,同时还保留了网络带宽。;我们的组感知流过滤框架是可扩展的并支持多种监视应用程序的过滤需求范围。我们使用基于实际数据集的原型系统评估这种方法。结果表明,与自私的流过滤相比,质量管理的组感知过滤在节省CPU时间以节省带宽方面是有效的。我们还评估了每种算法对数据的时间新鲜度的影响。最后,我们讨论了可能受益于组感知流过滤的其他应用程序领域。

著录项

  • 作者

    Li, Ming.;

  • 作者单位

    Dartmouth College.;

  • 授予单位 Dartmouth College.;
  • 学科 Computer Science.
  • 学位 Ph.D.
  • 年度 2008
  • 页码 126 p.
  • 总页数 126
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 自动化技术、计算机技术;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号