首页> 外文学位 >High-Performance Millimeter-Wave and Terahertz Design: A New Approach to Design above FMAX/2
【24h】

High-Performance Millimeter-Wave and Terahertz Design: A New Approach to Design above FMAX/2

机译:高性能毫米波和太赫兹设计:FMAX / 2以上的新设计方法

获取原文
获取原文并翻译 | 示例

摘要

All promising applications of terahertz (THz) and millimeter-wave (mm-wave) systems, from imaging and spectroscopy to high data-rate communication, necessitate the design of high efficiency signal sources and amplifiers. In addition to the high propagation loss of the signals in these frequency ranges, the poor activity of the existing CMOS/SiGe devices working above fmax /2 emphasizes on the importance of developing new design methods in order to have high output power and efficiency signal sources and high power gain amplifiers.;Despite of these challenges in circuit design at this frequency range, the myriad applications of the systems working in this frequency range has attracted many researchers to work on these systems. In the past ten years, the reported output power of signal sources in this frequency range has increased by more than 40 dB which is a huge progress. High frequency amplifiers have also passed through a tremendous progress during the past decade. However, generating sufficient power is still one of the critical issue in these systems. Indeed, the so-called "terahertz gap" is a quite well-known fact, which means both silicon based electronics and photonics based devices are incapable of generating adequate power in the mm-wave and terahertz frequency range. Thus, the researchers have to come up with new methodologies to increase the output power. This main challenge presents itself in designing two fundamental circuit blocks that appear in most electronic systems and circuits, i.e. the signal sources and the amplifiers. Compared to low frequency, the former lacks high DC-to-RF efficiency and the latter suffers from a low power gain.;Chapter 1 provides a complete overview of progress and challenges in mm-wave and THz signal source design. In Chapter 2 a novel approach to design efficient high-outputpower fundamental oscillators beyond fmax /2 of the employed process is presented. The idea is to shape and maximize the unilateral power gain of the network at the desired frequency using optimum passive internal and external feedback networks. The proposed technique significantly improves the output power and DC-to-RF efficiency of the oscillator. To show the feasibility of this novel approach, a 175 GHz fundamental oscillator is designed in a 130 nm SiGe BiCMOS process ( fmax ≃ 280 GHz), which achieves a measured DC-to-RF efficiency of 11.7% that is one of the highest ones among all previously reported oscillators above fmax/3 of their active devices. Measurements show that the designed oscillator generates a peak power of 3 mW (4.8 dBm) with a phase noise FoM of --195.4 dBc/Hz at 1 MHz offset frequency, which is the highest phase noise FoM among all reported CMOS/BiCMOS mm-wave and terahertz oscillators. The proposed method takes into account the possible PVT variations as well as modeling errors of the passive components in the design stage. A similar approach to design efficient high-output-power fundamental oscillators close to the fmax of the employed process is presented in Chapter 3. The idea is based on shaping and optimizing the maximally efficient power gain (GME) of the circuit using a pair of internal/external feedback mechanisms. Solving a constrained optimization problem, an optimum pair of passive feedback network is designed to achieve the highest maximally efficient power gain in order to increase the output power and thence the DC-to-RF efficiency. A 195 GHz fundamental oscillator is designed in a 55 nm SiGe process (f max ≃ 340 GHz), which achieves a significantly higher DC-to-RF efficiency (15.3%) among all reported oscillators working above fmax/3 of their active devices. The oscillator generates a peak power of 4.5 mW (6.5 dBm) with the best phase noise of --82.3 dBc/Hz and the best FoM of --197 dBc/Hz measured at 100 KHz offset frequency, which is the best phase noise and FoM among all CMOS/SiGe mm-Wave oscillators. The proposed optimization-based method takes into account PVT variations as well as modeling errors of all components in the design process to guarantee the functionality of the fabricated circuit.;The last two chapters address the challenging problem of designing high power gain amplifiers at mm-wave and THz frequency ranges. A novel theory of stability for twoport networks is developed in Chapter 4. Using this theory, a new method of designing amplifiers with high power gain working close to the maximum frequency of oscillation (fmax) is proposed. Contrary to the existing amplifier design methodologies, in this method the transistor capability of power amplification is fully utilized. This becomes more important at frequencies close to the fmax where having high power gain is challenging due to degraded activity of the employed device. (Abstract shortened by ProQuest.).
机译:从成像和光谱学到高数据速率通信,太赫兹(THz)和毫米波(mm-wave)系统的所有有前途的应用都需要设计高效的信号源和放大器。除了在这些频率范围内信号的高传播损耗外,工作在fmax / 2以上的现有CMOS / SiGe器件的不良活动也强调了开发新设计方法的重要性,以便具有高输出功率和效率的信号源尽管在此频率范围内电路设计面临诸多挑战,但在此频率范围内工作的系统的众多应用吸引了许多研究人员在这些系统上进行工作。在过去的十年中,在此频率范围内报告的信号源输出功率已增加了40 dB以上,这是一个巨大的进步。在过去的十年中,高频放大器也取得了巨大的进步。但是,产生足够的功率仍然是这些系统中的关键问题之一。确实,所谓的“太赫兹间隙”是一个众所周知的事实,这意味着基于硅的电子产品和基于光子学的设备都无法在毫米波和太赫兹频率范围内产生足够的功率。因此,研究人员必须想出新的方法来增加输出功率。在设计出现在大多数电子系统和电路中的两个基本电路块时,即在信号源和放大器中出现了这一主要挑战。与低频相比,前者缺乏高的DC-RF效率,而后者则具有较低的功率增益。第1章全面概述了毫米波和THz信号源设计的进展和挑战。在第2章中,提出了一种新颖的方法来设计超出所用过程的fmax / 2的高效高输出功率基本振荡器。这个想法是使用最佳的无源内部和外部反馈网络,以所需的频率调整和最大化网络的单边功率增益。所提出的技术显着提高了振荡器的输出功率和DC-RF效率。为了展示这种新颖方法的可行性,在130 nm SiGe BiCMOS工艺(fmax≃ 280 GHz)中设计了175 GHz基本振荡器,该器件的实测DC-RF效率达到了11.7%,是最高的之一。在所有先前报告的振荡器中,其有源器件的fmax / 3以上。测量表明,设计的振荡器在1 MHz偏移频率下产生的峰值功率为3 mW(4.8 dBm),相位噪声FoM为--195.4 dBc / Hz,这是所有报道的CMOS / BiCMOS mm-中最高的相位噪声FoM波和太赫兹振荡器。所提出的方法在设计阶段考虑了可能的PVT变化以及无源组件的建模误差。第3章介绍了一种类似的方法来设计接近所采用过程的fmax的高效高输出功率基本振荡器。该思想基于使用一对电容对电路的最大有效功率增益(GME)进行整形和优化。内部/外部反馈机制。为了解决约束优化问题,设计了一对最佳的无源反馈网络,以实现最高的最大有效功率增益,从而增加输出功率,进而提高DC-RF效率。在55 nm SiGe工艺(f max≃ 340 GHz)中设计了195 GHz基本振荡器,在所有报告的工作于其有源器件的fmax / 3以上的振荡器中,它实现了明显更高的DC-RF效率(15.3%)。 。振荡器产生的峰值功率为4.5 mW(6.5 dBm),在100 KHz偏移频率下测得的最佳相位噪声为--82.3 dBc / Hz,最佳FoM为--197 dBc / Hz,这是最佳的相位噪声和所有CMOS / SiGe毫米波振荡器中的FoM。所提出的基于优化的方法在设计过程中考虑了PVT的变化以及所有组件的建模误差,以保证所制造电路的功能。最后两章解决了在mm-处设计高功率增益放大器的挑战性问题。波和太赫兹频率范围。第4章提出了一种新颖的双端口网络稳定性理论。利用该理​​论,提出了一种设计高功率增益,接近于最大振荡频率(fmax)的放大器的新方法。与现有的放大器设计方法相反,这种方法充分利用了晶体管的功率放大能力。这在接近fmax的频率上变得尤为重要,在该频率下,由于所用设备的活动性能下降,因此具有高功率增益非常困难。 (摘要由ProQuest缩短。)。

著录项

  • 作者

    Khatibi, Hamid.;

  • 作者单位

    Cornell University.;

  • 授予单位 Cornell University.;
  • 学科 Electrical engineering.;Engineering.
  • 学位 Ph.D.
  • 年度 2017
  • 页码 158 p.
  • 总页数 158
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号