首页> 外文学位 >Essays on predictive regression models for asset returns.
【24h】

Essays on predictive regression models for asset returns.

机译:关于资产收益率的预测回归模型的论文。

获取原文
获取原文并翻译 | 示例

摘要

The predictive regression model has been studied and widely applied in economics and finance in the last two decades, while several difficulties associated with the classical predictive models have not been solved out appropriately. In this dissertation, my aim is to look for solutions to these difficulties for both linear and nonlinear predictive regression models.;The "endogeneity" and high persistency of the predictive variables are the two main problems embedded in the linear predictive models. To remove the "endogeneity", the linear projection is commonly applied to deal with the two innovations in the predictive model and the model for regressors, and then the ordinary least square method is adopted to estimate the coefficients. The asymptotic distributions of these estimates are established assuming alpha-mixing innovations and these asymptotic results show that convergence rates for different coefficients are different due to the highly persistent nature of the state variable. In addition, we show that if there is a drift in the autoregressive model for the state variable, the asymptotic distribution of the predicting coefficient would be changed with a faster convergence rate. In order to check the significance of the unknown coefficients, the Monte Carlo simulation method is used to find the appropriate critical values.;In order to deal with the possible instability of the predictability associated to the linear predictive model, I propose a time-varying coefficient predictive model, which also takes account of the "endogeneity" and persistent state variables such as nearly integrated or integrated processes. The local linear approach is used to estimate the time-varying coefficient functions, and the asymptotic distributions of these estimates are developed for alpha-mixing innovations. Again, the difference between the asymptotic distributions of the estimated predicting coefficient under the conditions with or without a drift in the AR model is discussed. Based on the asymptotic theory, it can be shown that the orders iv of the bandwidths used to estimate the intercept and slope functions are different, which implies that a two stage estimation procedure should be considered in order to obtain the optimal estimations for all coefficients. In addition, an L2 type of statistic is proposed to check the stability of the coefficient vector, and the asymptotic distributions of the test statistic under the null and alternative hypotheses are developed respectively.;For both models, finite sample results are investigated using Monte Carlo simulation studies in order to show the usefulness of the estimation method and the test statistics. Also the empirical applications to the predictability of CRSP monthly returns are also implemented to illustrate our proposed models and methods.
机译:在过去的二十年中,已经对预测回归模型进行了研究并在经济学和金融学中得到广泛应用,而与经典预测模型相关的一些困难尚未得到适当解决。本文旨在为线性和非线性预测回归模型寻找这些困难的解决方案。预测变量的“内生性”和高持久性是线性预测模型中嵌入的两个主要问题。为了消除“内生性”,通常使用线性投影来处理预测模型和回归模型中的两个创新,然后采用普通最小二乘法来估计系数。这些估计的渐近分布是在阿尔法混合创新的基础上建立的,这些渐近结果表明,由于状态变量的高度持久性,不同系数的收敛速度不同。另外,我们表明,如果状态变量的自回归模型存在漂移,则预测系数的渐近分布将以更快的收敛速度发生变化。为了检查未知系数的显着性,使用蒙特卡罗模拟方法找到合适的临界值。为了解决与线性预测模型相关的可预测性的可能不稳定性,我提出了一个时变系数预测模型,该模型还考虑了“内生性”和持久状态变量,例如几乎集成或集成的过程。局部线性方法用于估计时变系数函数,并且这些估计的渐近分布是针对alpha混合创新而开发的。再次,讨论了在AR模型中有或没有漂移的条件下,估计预测系数的渐近分布之间的差异。根据渐近理论,可以证明用于估计截距和斜率函数的带宽的阶数iv是不同的,这意味着应该考虑采用两阶段估计程序,以便获得所有系数的最佳估计值。另外,提出了一种L2型统计量来检验系数向量的稳定性,并分别建立了零假设和替代假设下检验统计量的渐近分布。;对于这两个模型,均使用蒙特卡洛研究了有限样本结果仿真研究,以显示估计方法和检验统计数据的有用性。还对CRSP月收益的可预测性进行了经验应用,以说明我们提出的模型和方法。

著录项

  • 作者

    Wang, Yunfei.;

  • 作者单位

    The University of North Carolina at Charlotte.;

  • 授予单位 The University of North Carolina at Charlotte.;
  • 学科 Statistics.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 123 p.
  • 总页数 123
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号