首页> 外文学位 >Chemical-induced post-translational modifications and the consequent structural and functional alterations.
【24h】

Chemical-induced post-translational modifications and the consequent structural and functional alterations.

机译:化学诱导的翻译后修饰以及随后的结构和功能改变。

获取原文
获取原文并翻译 | 示例

摘要

Chemical-induced post-translational modifications (PTMs) can alter the structure of proteins, with consequences that may alter protein function, including interference with protein-protein interactions, subcellular protein compartmentalization, and disruption of cellular signaling pathways. To identify the impact of PTMs on the structure and function of protein targets in vitro and in vivo, electrophiles with known toxicity were utilized. Hydroquinone, and its thioether metabolites, cause renal proximal tubular cell necrosis and nephrocarcinogenicity in rats. The adverse effects of these chemicals are in part a result of their oxidation to 1,4-benzoquinones (BQ). Cytochrome c and caspase-7 have been studied as model proteins to identify site-specific adductions and the resulting structural and functional consequences associated with apoptosis. BQ and 2-( N-acetylcystein-S-yl)benzoquinone (NAC-BQ) preferentially bind to solvent-exposed lysine-rich regions within cytochrome c, and specific glutamic acid residues within cytochrome c are novel sites of NAC-BQ adduction. Furthermore, the microenvironment at the site of adduction governs both the initial specificity and the structure of the final adduct. Solvent accessibility and local pKa of the adducted and neighboring amino acids contribute to the selectivity of adduction. Post-adduction chemistry subsequently alters the nature of the final adduct. BQ induced PTMs in cytochrome c produce changes in the structure sufficient to inhibit its ability to initiate caspase-3 activation in native lysates, and its ability to promote Apaf-1 oligomerization into an apoptosome complex, in a purely reconstituted system.;Quinone-thioether-protein adduct stability is also dependent upon physiological conditions. Adduct formation on cysteine residues under physiological conditions may be transient, whilst remaining capable of impacting cell signaling events, and of thus contributing to the toxic response elicited by these compounds. Indeed, in vitro analysis of caspase-7 revealed that cysteine residues within the protein are transiently modified with BQ, including the active site thiolate anion. In vitro and in vivo analysis of quinone-thioether adduction on caspase proteins also provided evidence that these catalytic proteins may be in vivo quinone-thioether targets, and could contribute to a mechanistic understanding of the necrotic mode of cell death initiated by quinone-thioether exposure. In summary, mass spectroscopic, molecular modeling, and biochemical approaches collectively confirm that electrophile-protein adducts produce structural changes that influence biological function. Identification of such chemical-induced PTMs on target proteins can provide critical mechanistic understanding of their role in response to environmental chemicals and the associated disease progression. Furthermore, because quinones are a well-known class of electrophilic species and the quinone moiety exits in a number of chemotherapeutic agents, identification of these PTMs will provide insight into the field of drug development and the role electrophilic drug metabolite-PTMs may play in unwanted drug-induced toxicities.
机译:化学诱导的翻译后修饰(PTM)可以改变蛋白质的结构,其后果可能会改变蛋白质的功能,包括干扰蛋白质-蛋白质相互作用,亚细胞蛋白质区室化和破坏细胞信号传导途径。为了确定PTM对体外和体内蛋白质靶标的结构和功能的影响,使用了已知毒性的亲电试剂。对苯二酚及其硫醚代谢物会导致大鼠肾近端小管细胞坏死和肾致癌性。这些化学药品的不利影响部分是由于它们被氧化为1,4-苯醌(BQ)的结果。已经研究了细胞色素c和caspase-7作为模型蛋白,以鉴定位点特异性加合物以及与凋亡相关的结构和功能后果。 BQ和2-(N-乙酰基半胱氨酸-S-基)苯醌(NAC-BQ)优先结合到细胞色素c内溶剂暴露的富含赖氨酸的区域,细胞色素c内的特定谷氨酸残基是NAC-BQ加合物的新位点。此外,加合物位点的微环境控制着初始特异性和最终加合物的结构。加合物和邻近氨基酸的溶剂可及性和局部pKa有助于加合物的选择性。加合物后的化学反应随后改变了最终加合物的性质。 BQ诱导的细胞色素c中的PTM在纯重构系统中产生足以抑制其启动天然裂解物中caspase-3活化的能力以及促进Apaf-1寡聚化为凋亡小体复合物的能力的结构变化。 -蛋白质加合物的稳定性还取决于生理条件。在生理条件下,半胱氨酸残基上的加合物形成可能是瞬时的,同时仍然能够影响细胞信号转导事件,并因此有助于这些化合物引起的毒性反应。实际上,对caspase-7的体外分析表明,蛋白质中的半胱氨酸残基被BQ瞬时修饰,包括活性位点硫醇根阴离子。胱天蛋白酶对醌-硫醚加合物的体外和体内分析也提供了证据,表明这些催化蛋白可能是体内醌-硫醚的靶标,并且可能有助于从机理上理解由醌-硫醚暴露引发的细胞死亡的坏死模式。 。总而言之,质谱,分子建模和生物化学方法共同证实了亲电子蛋白加合物会产生影响生物学功能的结构变化。对目标蛋白上此类化学诱导的PTM的鉴定可提供对它们对环境化学物质及相关疾病进展的反应的关键机制的关键机理了解。此外,由于醌是一类众所周知的亲电物质,并且醌部分存在于许多化学治疗剂中,因此鉴定这些PTM将提供对药物开发领域的洞察力,以及亲电药物代谢物PTM可能在有害物质中发挥的作用药物引起的毒性。

著录项

  • 作者

    Fisher, Ashley Anne.;

  • 作者单位

    The University of Arizona.;

  • 授予单位 The University of Arizona.;
  • 学科 Health Sciences Toxicology.;Chemistry Biochemistry.
  • 学位 Ph.D.
  • 年度 2008
  • 页码 268 p.
  • 总页数 268
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 毒物学(毒理学);生物化学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号