首页> 外文学位 >Proximity field nanopatterning for large area three-dimensional photonic nanostructures: Forward and inverse problem modeling.
【24h】

Proximity field nanopatterning for large area three-dimensional photonic nanostructures: Forward and inverse problem modeling.

机译:大面积三维光子纳米结构的近场纳米图案化:正向和反向问题建模。

获取原文
获取原文并翻译 | 示例

摘要

Production methods used in photonics and nanotechnology suffer from many limitations, hindering the ability to realize devices and restricting the actual number of applications. An ideal processing method should require low-cost equipment, be able to produce very fine details, and be scalable to process large area specimens in an acceptable amount of time. Proximity Field Nanopatterning (PnP) is a lithography method possessing these features. By using interference patterns produced by a two-dimensional phase mask, the technique is able to generate a submicron detailed exposure on a millimeter-size slab of light sensitive photopolymer. Exposure to light at certain wavelengths modify chemical properties of photopolymers at the exposed locations. In particular, solubilities of photopolymers in certain liquids are altered by exposure. In Proximity Field Nanopatterning, the photopolymer slab is developed like a photographic plate in such a liquid to reveal three-dimensional interference patterns from the phase mask.;While it is possible to use computer aided simulations to obtain the interference patterns produced by a mask with a certain pattern, the inverse problem of producing a mask for a desired interference pattern cannot be solved in the same way due to the intricacies of light interactions involved in producing the final interference pattern. An alternative technique is to iteratively optimize the phase mask so that the interference patterns obtained converge to the desired pattern. This work starts by elaborating on development and implementation of an integrated method which accomplishes the task by comparing results from a Finite Difference Time Domain method based simulation of a PnP experiment to a set of images from targeted structures. The comparison results, quantified through fuzzy image pattern recognition techniques, are interpreted by a fast gradient based optimizer, which provides corrections to the PnP phase mask for the next iteration.;Further improvement of the integrated method through automated learning by a fuzzy inference system is detailed next. Driven by a robust structural analysis technique parameterizing images from simulations and desired structures alike, the inference system learns the relationships between parameters of phase masks and resultant structures to provide invaluable initial guidance for the main optimizer. We undertake further theoretical studies of PnP to investigate its few limitations. Finally, we report the first customizable large-area production of a Penrose quasicrystal active in the infrared and visible wavelengths, complete with structural modeling and similarity analysis.
机译:光子学和纳米技术中使用的生产方法受到许多限制,从而阻碍了实现器件的能力并限制了实际的应用数量。理想的处理方法应该需要低成本的设备,能够产生非常精细的细节,并且可以扩展以在可接受的时间内处理大面积的样本。接近场纳米图案化(PnP)是一种具有这些功能的光刻方法。通过使用二维相位掩模产生的干涉图样,该技术能够在毫米大小的光敏光敏聚合物平板上产生亚微米级的详细曝光。暴露于某些波长的光会改变光聚合物在暴露位置的化学性质。特别地,光聚合物在某些液体中的溶解度通过曝光而改变。在接近场纳米图案化中,光敏聚合物平板像照相板一样在这种液体中显影,以显示出来自相位掩模的三维干涉图样;虽然可以使用计算机辅助模拟来获得由掩模形成的干涉图样。在特定的图案上,由于产生最终干涉图案所涉及的光相互作用的复杂性,不能以相同的方式解决为期望的干涉图案制造掩模的反问题。一种替代技术是迭代地优化相位掩模,以使获得的干涉图样收敛到所需的图样。这项工作首先详细说明一种集成方法的开发和实施,该方法通过将基于有限差分时域方法的PnP实验模拟结果与目标结构图像集进行比较,从而完成任务。通过基于快速梯度的优化器对通过模糊图像模式识别技术量化的比较结果进行解释,该优化器可为下一次迭代提供对PnP相位掩码的更正。通过模糊推理系统的自动学习,对集成方法的进一步改进是:接下来详细。在可靠的结构分析技术的驱动下,推理系统可以对来自仿真和所需结构的图像进行参数化,从而推断系统学习相位掩模参数与所得结构之间的关系,从而为主要优化器提供宝贵的初始指导。我们对PnP进行了进一步的理论研究,以研究其局限性。最后,我们报告了在红外和可见光波长下具有活性的彭罗斯准晶体的第一个可定制的大面积生产,并完成了结构建模和相似性分析。

著录项

  • 作者

    Su, Mehmet Fatih.;

  • 作者单位

    The University of New Mexico.;

  • 授予单位 The University of New Mexico.;
  • 学科 Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 2008
  • 页码 210 p.
  • 总页数 210
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号