首页> 外文学位 >Ideals in k-graph algebras.
【24h】

Ideals in k-graph algebras.

机译:k图代数的理想选择。

获取原文
获取原文并翻译 | 示例

摘要

Higher-rank graph C*-algebras were introduced in 2000 by Kumjian and Pask. They are natural generalizations of directed graph algebras and many of the results concerning higher-rank graphs have come by finding higher-rank analogs of results from the theory of directed graph algebras.;The finitely aligned higher-rank graphs form the largest class of higher-rank graphs with an associated C*-algebra, included amongst them are all row-finite higher-rank graphs and many row-infinite higher-rank graphs. Local periodicity was first identified by Robertson and Sims for row-finite sourceless higher-rank graphs. An appropriate formulation of local periodicity for finitely aligned graphs is introduced and equivalence between the various periodicity conditions is demonstrated. A characterization of the simple finitely aligned higher-rank graph algebras is provided in terms of local periodicity and cofinality.;The primitive ideal structure of higher-rank graph C*-algebras is investigated following a strategy established by an Huef and Raeburn for Cuntz-Krieger algebras and by Bates, Hong, Raeburn, and Szymanski for directed graph algebras. It is shown that primitive ideals naturally correspond with certain subsets of vertices known as maximal tails. It is shown that the gauge-invariant primitive ideals in a higher-rank graph C*-algebra are in bijective correspondence with a sub-collection of maximal tails. This description also provides for an analysis of the hull-kernel topology when every ideal is gauge-invariant. In order to initiate a study of the non-gauge-invariant ideals, a family of irreducible representations is introduced along with a family of commuting unitaries with full joint spectrum. It is shown that the periodic portion of the graph may be separated away from the aperiodic part, which leads to a tensor product decomposition for a large class of periodic higher-rank graph algebras. These results provide the framework for an analysis of the primitive ideal space.
机译:2000年Kumjian和Pask提出了更高阶的C *代数。它们是有向图代数的自然概括,有关高阶图的许多结果都是通过从有向图代数理论中找到结果的高阶类似物而得出的;有限排列的高阶图构成了最大的高阶图。具有关联的C *代数的高秩图,其中包括所有行有限的高阶图和许多行无限的高阶图。罗伯逊和西姆斯首先为行有限的无源高阶图确定了局部周期性。介绍了用于有限对齐图的局部周期性的适当公式,并证明了各种周期性条件之间的等效性。通过局部周期性和共最终性,对简单有限排列的高阶图代数进行了刻画。;根据Huef和Raeburn为Cuntz-建立的策略,研究了高阶图C *-代数的原始理想结构。 Krieger代数以及Bates,Hong,Raeburn和Szymanski的有向图代数。结果表明,原始理想自然地对应于称为最大尾部的某些顶点子集。结果表明,高阶图C *-代数中的轨距不变原始理想与最大尾数的子集合成双射对应。此描述还提供了当每个理想值都不变时对船体-内核拓扑的分析。为了启动对非规范不变理想的研究,引入了一个不可约表示族以及一个具有全联合谱的通勤unit族。结果表明,图的周期部分可能与非周期部分分开,这导致了一大类周期的高阶图代数的张量积分解。这些结果为分析原始理想空间提供了框架。

著录项

  • 作者

    Shotwell, Jacob.;

  • 作者单位

    Arizona State University.;

  • 授予单位 Arizona State University.;
  • 学科 Mathematics.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 136 p.
  • 总页数 136
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号