首页> 外文学位 >Toxicogenetic studies in Drosophila: Using fruit flies to study arsenic toxicity.
【24h】

Toxicogenetic studies in Drosophila: Using fruit flies to study arsenic toxicity.

机译:果蝇的致癌研究:使用果蝇研究砷毒性。

获取原文
获取原文并翻译 | 示例

摘要

Arsenic contamination of drinking water supplies around the world is considered the worst environmental disaster of recent times. Chronic consumption of arsenic can lead to an array of serious pathological outcomes, in some of which methylation of the metal may be a crucial component in determining toxicity. Differential responsiveness within human populations suggests inter-individual genetic variation also plays an important role. We have used Drosophila melanogaster as a model to study arsenic response pathways because of unrivalled access to varied genetic approaches and significant overlap with many aspects of mammalian physiology and disease phenotypes. Genetic analysis of various strains exhibiting relative susceptibility or resistance to arsenite toxicity resulted in the identification of a chromosomal region able to confer a differential response phenotype. We created fly lines harboring small, overlapping deficiencies in this region and found that relative arsenite sensitivity arose when the glutathione synthetase (GS) gene dose was reduced by half. Knock-down of GS expression by RNA interference both in S2 cells and in vivo led to highly enhanced arsenite sensitivity. These analyses provide genetic proof that an optimally functioning glutathione (GSH) biosynthetic pathway is required for a robust defense against arsenite. Moreover, they unexpectedly highlight a step previously considered to be without regulatory significance; the implications of this are discussed in the context of GSH supply and demand under arsenite-induced stress. Recent work has shown that Drosophila does not possess an arsenic methylation pathway comparable to the human. Since methylated arsenicals (MAs) may be key players in the carcinogenic activity of arsenic, we have "humanized" Drosophila through the introduction of the human arsenic(III) methyltransferase (hAS3MT) gene expressed under easily manipulated regulatory control. Transgenic flies can be induced to express an antigenically cross-reactive form with arsenic methyltransferase activity of the hAS3MT enzyme and its expression does not affect the development or viability when exposed or unexposed to arsenic. Preliminary results using an in vivo genotoxicity assay have shown that production of MAs induces tumorigenesis in Drosophila. This model is ready for use in exploring mechanisms of arsenic genotoxicity and/or carcinogenicity in many informative genetic backgrounds, as well as the effects of different polymorphic variants of AS3MT found in human populations.
机译:全世界饮用水供应中的砷污染被认为是近来最严重的环境灾难。长期消耗砷会导致一系列严重的病理结果,其中某些金属的甲基化可能是决定毒性的关键因素。人群中的差异反应表明个体间遗传变异也起着重要作用。我们已经使用果蝇果蝇作为研究砷反应途径的模型,因为它无与伦比的获得各种遗传方法的途径,并且与哺乳动物生理学和疾病表型的许多方面都存在明显的重叠。对表现出相对易感性或对亚砷酸盐毒性具有抗性的各种菌株的遗传分析导致鉴定了能够赋予差异反应表型的染色体区域。我们创建了在该区域中存在小的重叠重叠缺陷的飞行路线,并发现当谷胱甘肽合成酶(GS)基因剂量减少一半时,相对亚砷酸盐敏感性上升。在S2细胞和体内均可通过RNA干扰抑制GS表达,从而大大提高了砷的敏感性。这些分析提供了遗传证据,证明了针对砷的强大防御需要最佳功能的谷胱甘肽(GSH)生物合成途径。此外,它们出乎意料地突出了以前认为没有监管意义的步骤;在砷引起的应力作用下,谷胱甘肽供需的背景下讨论了其含义。最近的工作表明,果蝇不具有与人类相当的砷甲基化途径。由于甲基化砷(MAs)可能是砷致癌活性的关键因素,我们通过引入在易于控制的调控下表达的人砷(III)甲基转移酶(hAS3MT)基因来“化”果蝇。可以诱导转基因果蝇表达具有hAS3MT酶的砷甲基转移酶活性的抗原交叉反应形式,当暴露或不暴露于砷时,其表达不影响发育或生存力。使用体内基因毒性测定的初步结果表明,MAs的产生可诱导果蝇中的肿瘤发生。该模型已准备好用于探索许多有益遗传背景中砷的遗传毒性和/或致癌性机理,以及在人群中发现的AS3MT多态性变异体的影响。

著录项

  • 作者

    Muniz Ortiz, Jorge Gerardo.;

  • 作者单位

    University of Cincinnati.;

  • 授予单位 University of Cincinnati.;
  • 学科 Health Sciences Toxicology.;Chemistry Biochemistry.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 148 p.
  • 总页数 148
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 毒物学(毒理学);生物化学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号