首页> 外文学位 >A novel invertebrate chordate model for Alzheimer's disease using the ascidian Ciona intestinalis.
【24h】

A novel invertebrate chordate model for Alzheimer's disease using the ascidian Ciona intestinalis.

机译:使用海鞘Ciona小肠的新型阿尔茨海默氏病无脊椎动物碳酸盐模型。

获取原文
获取原文并翻译 | 示例

摘要

Research to understand Alzheimer's disease (AD) pathogenesis has involved the use of model systems to reproduce various aspects of the disease process, particularly the coordinated processing of the amyloid precursor protein (APP) by alpha-, beta-, and gamma-secretases to generate amyloid beta (Abeta)- containing plaques, a process termed the amyloid hypothesis of AD. In recent years, a variety of invertebrate systems including Drosophila melanogaster and Caenorhabditis elegans have been exploited to study the pathogenesis of AD but it is not clear as to whether lower invertebrate species can provide a direct comparison in understanding human neurological diseases. Additionally, the absence of a functional Abeta sequence and lack of equivalent beta-secretases in current invertebrate models have limited efforts in studying the amyloid hypothesis in vivo. As invertebrate chordates belonging to the subphylum Urochordata, the closest living sister group of vertebrates, the ascidian system will complement current AD research models by providing the experimental advantages of invertebrates in a chordate body plan.;Here, we describe the generation of an ascidian model to study various aspects of the amyloid hypothesis including APP processing, Abeta plaque formation, and Abeta-mediated neurotoxicity. In transgenic ascidian larvae that express human APP695 (hAPP695) alone, Abeta peptides are produced that can aggregate to form Abeta-containing plaques detectable within 23 hours post fertilization. In support for conservation of the APP processing cascade, familial AD-associated mutations in hAPP695 result in a significant increase in plaque formation in vivo. Furthermore, co-expression with ascidian CiBace leads to increased amyloid deposition indicating that ascidians possess a functional beta-secretase orthologue, a finding unique among other invertebrates. Nervous system-specific expression of the processed Abeta peptide causes observable alterations in neuromuscular functioning and larval behavior, indicative by a reduction in the frequency of tail twitching and the ability to respond to light respectively. Importantly, the treatment of our AD ascidian model with an inhibitor of amyloid aggregation reduces plaque load and improves both neuromuscular function and the phototactic response. Overall, this study introduces the ascidian as an animal model that rapidly exhibits AD-like pathologies and provides the framework for understanding and possibly treating this disease and other neurological disorders.
机译:了解阿尔茨海默氏病(AD)发病机理的研究涉及使用模型系统重现疾病过程的各个方面,尤其是通过α,β和γ分泌酶对淀粉样前体蛋白(APP)进行协同加工以生成含有淀粉样蛋白β(Abeta)的噬菌斑,这一过程称为AD的淀粉样蛋白假说。近年来,已经开发了包括黑腹果蝇和秀丽隐杆线虫在内的多种无脊椎动物系统来研究AD的发病机理,但是尚不清楚低无脊椎动物是否可以在理解人类神经系统疾病方面提供直接的比较。另外,当前无脊椎动物模型中缺少功能性Abeta序列和等效的β-分泌酶,在体内研究淀粉样蛋白假说方面的努力有限。作为无脊椎动物脊索动物属于近亲生活的脊椎动物姐妹群Urochordata,这种海鞘系统将通过在无脊椎动物身体计划中提供无脊椎动物的实验优势,来补充当前的AD研究模型。研究淀粉样蛋白假说的各个方面,包括APP处理,Abeta斑块形成和Abeta介导的神经毒性。在仅表达人APP695(hAPP695)的转基因海生幼虫中,产生的Abeta肽可聚集形成受精后23小时内可检测到的Abeta噬菌斑。为了支持APP处理级联的保守,hAPP695中的家族性AD相关突变导致体内噬菌斑形成显着增加。此外,与海鞘CiBace的共表达会导致淀粉样蛋白沉积增加,表明海鞘具有功能性β分泌酶直向同源物,这一发现在其他无脊椎动物中是独一无二的。加工过的Abeta肽的神经系统特异性表达引起神经肌肉功能和幼虫行为的可观察到的改变,分别由尾部抽搐的频率和对光的反应能力的降低指示。重要的是,用淀粉样蛋白聚集抑制剂治疗我们的AD海鞘模型可减少斑块负荷并改善神经肌肉功能和光战术反应。总的来说,这项研究引入了作为动物模型的海鞘,该动物模型迅速表现出AD样病理,并为理解和可能治疗这种疾病和其他神经系统疾病提供了框架。

著录项

  • 作者

    Virata, Michael J.;

  • 作者单位

    University of California, San Diego.;

  • 授予单位 University of California, San Diego.;
  • 学科 Biology Molecular.;Biology Neuroscience.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 219 p.
  • 总页数 219
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号