首页> 外文学位 >Design and microfabrication of a CMOS-MEMS piezoresistive accelerometer and a nano-Newton force sensor.
【24h】

Design and microfabrication of a CMOS-MEMS piezoresistive accelerometer and a nano-Newton force sensor.

机译:CMOS-MEMS压阻式加速度计和纳米牛顿力传感器的设计和微制造。

获取原文
获取原文并翻译 | 示例

摘要

This thesis work consists of three aspects of research efforts: (1) Design, fabrication, and characterization of a CMOS-MEMS piezoresistive accelerometer (2) Design, fabrication, and characterization of a CMOS-MEMS nano-Newton force sensor (3) Observer-based controller design of a nano-Newton force sensor actuator system.;A low-cost, high-sensitivity CMOS-MEMS piezoresistive accelerometer with large proof mass has been fabricated. Inherent CMOS polysilicon thin film was utilized as piezoresistive material and full Wheatstone bridge was constructed through easy wiring allowed by three metal layers in CMOS thin films. The device fabrication process consists of a standard CMOS process for sensor configuration and a deep reactive ion etching (DRIE) based post-CMOS microfabrication for MEMS structure release Bulk single-crystal silicon (SCS) substrate was included in the proof mass to increase sensor sensitivity. Using a low operating power of 1.67 mW, the sensitivity was measured as 30.7 mV/g after amplification and 0.077 mV/g prior to amplification. With a total noise floor of 1.03 mg/✓Hz, the minimum detectable acceleration is found to be 32.0 mg for a bandwidth of 1 kHz which is sufficient for many applications.;The second device investigated in this thesis work is a CMOS-MEMS capacitive force sensor capable of nano-Newton out-of-plane force measurement Sidewall and fringe capacitance formed by the multiple CMOS metal layers were utilized and fully differential sensing was enabled by common-centroid wiring of the sensing capacitors. Single-crystal silicon (SCS) is incorporated in the entire sensing element for robust structures and reliable sensor deployment in force measurement A sensitivity of 8 mV/g prior to amplification was observed. With a total noise floor of 0.63 mg/✓Hz, the minimum detection acceleration is found to be 19.8 mg, which is equivalent to a sensing force of 449 nN.;This work also addresses the design and simulation of an observer-based nonlinear controller employed in a CMOS-MEMS nano-Newton force sensor actuator system. Measurement errors occur when there are in-plane movements of the probe tip; these errors can be controlled by the actuators incorporated within the sensor Observer-based controller is necessitated in real-world control applications where not all the state variables are accessible for on-line measurements.
机译:本论文的研究工作包括三个方面:(1)CMOS-MEMS压阻式加速度计的设计,制造和表征(2)CMOS-MEMS纳米牛顿力传感器的设计,制造和表征(3)观察者牛顿力传感器执行器系统的基于控制器的控制器设计;;制造了低成本,高灵敏度,大质量的CMOS-MEMS压阻式加速度计。利用固有的CMOS多晶硅薄膜作为压阻材料,并通过CMOS薄膜中的三个金属层所允许的简易布线来构建完整的惠斯通电桥。器件制造工艺包括用于传感器配置的标准CMOS工艺和用于MEMS结构释放的基于深度反应离子刻蚀(DRIE)的后CMOS微加工,其大批量单晶硅(SCS)基板包括在检测质量中以提高传感器灵敏度。使用1.67 mW的低工作功率,测得的灵敏度为扩增后的30.7 mV / g和扩增前的0.077 mV / g。在总噪声本底为1.03 mg /✓ Hz的情况下,发现对于1 kHz带宽,最小可检测加速度为32.0 mg,足以满足许多应用。;本文研究的第二个器件是CMOS-MEMS能够进行纳米牛顿面外力测量的电容式力传感器,利用了由多个CMOS金属层形成的侧壁和边缘电容,并通过感测电容器的共质心布线实现了全差分感测。单晶硅(SCS)集成在整个传感元件中,以实现坚固的结构和在力测量中可靠地部署传感器。观察到放大前的灵敏度为8 mV / g。总噪声本底为0.63 mg /✓ Hz,最小检测加速度为19.8 mg,相当于449 nN的感测力;该工作还解决了基于观察者的非线性的设计和仿真问题。 CMOS-MEMS纳米牛顿力传感器执行器系统中使用的控制器。当探针尖端在平面内移动时,会发生测量错误;这些错误可以通过传感器中包含的执行器来控制。在现实世界中,并非所有状态变量都可用于在线测量的控制应用中,需要基于观察器的控制器。

著录项

  • 作者

    Md Khir, Mohd Haris.;

  • 作者单位

    Oakland University.;

  • 授予单位 Oakland University.;
  • 学科 Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 147 p.
  • 总页数 147
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号