首页> 外文学位 >Low resistivity contact methodologies for silicon, silicon germanium and silicon carbon source/drain junctions of nanoscale CMOS integrated circuits.
【24h】

Low resistivity contact methodologies for silicon, silicon germanium and silicon carbon source/drain junctions of nanoscale CMOS integrated circuits.

机译:用于纳米级CMOS集成电路的硅,硅锗和硅碳源极/漏极结的低电阻率接触方法。

获取原文
获取原文并翻译 | 示例

摘要

State-of-the-art p-channel metal oxide semiconductor field effect transistors (MOSFETs) employ Si1--xGe x source/drain junctions to induce uniaxial compressive strain in the channel region in order to achieve hole mobility enhancement. It is also known that the electron mobility can be enhanced if the MOSFET channel is under uniaxial tension, which can be realized by replacing Si1-- xGex with Si 1--yCy epitaxial layers in recessed source/drain regions of n-channel MOSFETs.;This dissertation focuses on epitaxy of Si1-- yCy layers and low resistivity contacts on Si, Si1--xGe x, and Si1--yC y alloys. While these contacts are of particular importance for future MOSFETs, other devices based on these semiconductors can also benefit from the results.;The experimental work on Si1--yC y epitaxy focused on understanding the impact of various process parameters on carbon incorporation, substitutionality, growth rate, phosphorus incorporation and activation in order to achieve low resistivity Si1-- yCy films with high substitutional carbon levels. It was shown, for the first time, that phosphorus levels above 1021 cm-3 can be achieved with 1.2% fully substitutional carbon in epitaxial layers.;Specific contact resistivity (rhoc) on strained Si 1--xGex layers was evaluated based on published results from band structure calculations. Previous work on this topic mainly focused on barrier height and the doping density at the interface. In this work, the impact of tunneling effective mass on specific contact resistivity was calculated for the first time for strained Si1--xGe x alloys. It was shown that due to the exponential dependence of contact resistivity on tunneling effective mass, it may have a strong impact on source/drain contact resistivity. This is especially important for strained alloys in which the tunneling effective mass is dependent on the strain. The contact resistivity was found to decrease with Ge concentration due to the smaller tunneling effective mass in strained Si1-- xGex. These calculations can also be extended to Si1--yC y junctions when better models for the Si1-- yCy band structure are available.;Two different metallization schemes were considered to achieve low resistivity contacts. In the first approach, two band edge silicides were used to achieve low-resistivity contacts for complimentary MOSFETs. For this purpose, experiments were conducted on band edge silicides including PtSiGe, NiSiC and ErSiC. The impact of Ge and C on silicide formation and the barrier height at the interface was investigated. Barrier height values around 0.3 eV were achieved with PtSiGe and ErSiC contacts formed on p-Si1--xGe x and n-Si1--yC y, respectively. Due to the exponential dependence of contact resistivity on barrier height, this barrier height is low enough to yield contact resistivity figures below 10-8 O-cm 2 even with modest doping levels. On the other hand, smaller barrier height values will be needed for Schottky barrier MOSFETs.;It is more desirable to use a single metal contact on both p- and n-channel MOSFETs, which requires tuning of the barrier height. Impurity implantation was considered as a means to achieve barrier height tuning. Extremely small barrier height values (≤ 0.1 eV) were obtained by sulfur segregation for the silicides of Pt, Ni and NiPt on n-type Si and Si1-- yCy. Indium segregation was used for the first time to lower the hole barrier height to obtain barrier height values below 0.2 eV on p-Si.;Interfacial segregation of platinum (Pt) was investigated at NiSi/Si and NiSi1--zCz/Si 1--yCy junctions to modulate the Schottky barrier height. It was demonstrated that the barrier height of NiSi/p-Si can be lowered below 0.2 eV, while that of NiSi1-zCz/p-Si1--yC y is preserved. The fact that the presence of carbon retards the barrier height modulation by interfacial segregation provides a lithography free process to tune the hole barrier height. This process can be a complementary process to the electron barrier height tuning by sulfur segregation.;The results provide several approaches that can be used to form low resistivity contacts. We believe that the knowledge gained from this work is expected to have a significant impact on choosing the most effective and economical approach to form low-resistivity contacts in CMOS manufacturing.
机译:最新的p沟道金属氧化物半导体场效应晶体管(MOSFET)使用Si1-xGe x源/漏结在沟道区域中引起单轴压缩应变,以实现空穴迁移率的增强。众所周知,如果MOSFET沟道处于单轴张力下,则可以提高电子迁移率,这可以通过在n沟道MOSFET的凹陷源极/漏极区中用Si 1-yCy外延层替换Si1-xGex来实现。 ;本文主要研究Si1-yCy层的外延以及Si,Si1-xGe x和Si1-yC y合金上的低电阻率接触。尽管这些接触对于未来的MOSFET尤为重要,但基于这些半导体的其他器件也可以从结果中受益。; Si1-yC y外延的实验工作着重于了解各种工艺参数对碳掺入,取代度,生长速度,磷的引入和活化,以实现具有高取代碳水平的低电阻率Si1-yCy膜。首次表明,在外延层中使用1.2%的完全取代碳可以达到1021 cm-3以上的磷含量;根据已发表的论文评估了应变Si 1-xGex层的比接触电阻率(rhoc)。带结构计算的结果。以前有关该主题的工作主要集中在势垒高度和界面处的掺杂密度。在这项工作中,首次计算了应变Si1-xGe x合金的隧穿有效质量对比接触电阻率的影响。结果表明,由于接触电阻率对隧穿有效质量的指数依赖性,可能会对源/漏接触电阻率产生很大影响。这对于隧穿有效质量取决于应变的应变合金尤其重要。发现由于应变Si1–xGex中较小的隧穿有效质量,接触电阻率随Ge浓度而降低。当有更好的Si1-yCy能带结构模型可用时,这些计算也可以扩展到Si1-yCy结。;考虑了两种不同的金属化方案以实现低电阻率接触。在第一种方法中,使用了两个带状边缘硅化物来实现互补MOSFET的低电阻触点。为此,对包括PtSiGe,NiSiC和ErSiC的能带边缘硅化物进行了实验。研究了Ge和C对硅化物形成和界面处势垒高度的影响。分别在p-Si1-xGe x和n-Si1-yC y上形成的PtSiGe和ErSiC触点可实现约0.3 eV的势垒高度值。由于接触电阻率对势垒高度的指数依赖性,即使具有适度的掺杂水平,该势垒高度也足够低以产生低于10-8 O-cm 2的接触电阻率。另一方面,肖特基势垒MOSFET需要较小的势垒高度值。更可取的是,在p沟道和n沟道MOSFET上都使用单个金属触点,这需要调整势垒高度。杂质注入被认为是实现势垒高度调整的一种手段。通过硫隔离在n型Si和Si1-yCy上的Pt,Ni和NiPt的硅化物获得的极小的势垒高度值(≤0.1 eV)。首次使用铟隔离来降低空穴势垒高度,以在p-Si上获得低于0.2 eV的势垒高度;在NiSi / Si和NiSi1-zCz / Si 1-上研究了铂(Pt)的界面偏析-yCy结以调整肖特基势垒高度。已证明可以将NiSi / p-Si的势垒高度降低到0.2 eV以下,而保留了NiSi1-zCz / p-Si1-yC y的势垒高度。碳的存在阻碍了界面偏析对势垒高度的调节,这一事实提供了无光刻工艺来调节空穴势垒高度。此过程可以作为通过硫偏析调节电子势垒高度的补充过程。结果提供了几种可用于形成低电阻率触点的方法。我们认为,从这项工作中获得的知识有望对选择最有效,最经济的方法来形成CMOS制造中的低电阻触点产生重大影响。

著录项

  • 作者

    Alptekin, Emre.;

  • 作者单位

    North Carolina State University.;

  • 授予单位 North Carolina State University.;
  • 学科 Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 100 p.
  • 总页数 100
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号