首页> 外文学位 >Multi-view Representation Learning with Applications to Functional Neuroimaging Data
【24h】

Multi-view Representation Learning with Applications to Functional Neuroimaging Data

机译:多视图表示学习及其在功能性神经影像数据中的应用

获取原文
获取原文并翻译 | 示例

摘要

One of the greatest challenges for the 21st century is understanding how the human brain works. Although there are different levels of understanding of the human brain, a key step is knowing how brain activity patterns map onto cognition, emotion, memories, etc. This can be studied using functional magnetic resonance imaging (fMRI). fMRI is a non-invasive brain imaging technique with unprecedented spatiotemporal resolution. The fMRI data is gathered while subjects perform a wide-range of cognitive tasks. Analysis of fMRI data using multivariate statistics and machine learning has led to tremendous success in understanding how patterns of neural activity reflect mental representations. This thesis aims to continue the success through advancing machine learning methods motivated by applications to neuroscience problems.;We develop a multi-view learning framework that estimates shared features from multi-view data. We analyze and demonstrate two primary approaches of how can a multi-view learning framework provide new ways of exploring neuroimaging data. First, a multi-view learning model forms a larger dataset by aggregating data from multiple views. A key potential advantage of this is an increase in statistical sensitivity. Second, a multi-view learning model learns a shared feature space and transformations between each view's observation space and the shared feature space. These transformations bridge any two views, opening up new possibilities for analyzing the data. For example, by treating a subject as a view, we can transform one subject's fMRI data into the space of another subject's brain. By treating semantic vectors of stimulus text description and fMRI response as different views, it opens up the opportunity to generate text from fMRI responses or fMRI responses from text.;Lastly, we explore various forms of multi-view learning models, including manifold learning, probabilistic modeling, deep neural network, etc. Different ways of applying multi-view models on neuroimaging data are demonstrated and analyzed. We also discuss our contribution to the open-source software community.
机译:了解21世纪的最大挑战之一是了解人脑的工作方式。尽管对人脑的理解程度不同,但是关键的一步是要了解脑活动模式如何映射到认知,情感,记忆等方面。可以使用功能磁共振成像(fMRI)进行研究。功能磁共振成像是一种无创的脑成像技术,具有空前的时空分辨率。当受试者执行各种认知任务时,将收集fMRI数据。使用多元统计和机器学习对功能磁共振成像数据进行分析,已在理解神经活动模式如何反映心理表征方面取得了巨大的成功。本论文旨在通过推动应用到神经科学问题的机器学习方法来继续取得成功。;我们开发了一种多视图学习框架,该框架从多视图数据中估计共享特征。我们分析并演示了两种主要方法,即多视图学习框架如何提供探索神经影像数据的新方法。首先,多视图学习模型通过聚合来自多个视图的数据来形成更大的数据集。一个关键的潜在优势是统计灵敏度的提高。其次,多视图学习模型学习共享的特征空间以及每个视图的观察空间和共享的特征空间之间的转换。这些转换将任何两个视图联系在一起,为分析数据开辟了新的可能性。例如,通过将一个对象视为一个视图,我们可以将一个对象的fMRI数据转换为另一个对象的大脑空间。通过将刺激文本描述和fMRI响应的语义向量视为不同的视图,这为从fMRI响应或fMRI响应从文本生成文本提供了机会。最后,我们探索了多种形式的多视图学习模型,包括流形学习,演示和分析了在神经影像数据上应用多视图模型的不同方法。我们还将讨论我们对开源软件社区的贡献。

著录项

  • 作者

    Chen, Po-Hsuan.;

  • 作者单位

    Princeton University.;

  • 授予单位 Princeton University.;
  • 学科 Engineering.;Computer science.;Neurosciences.
  • 学位 Ph.D.
  • 年度 2017
  • 页码 144 p.
  • 总页数 144
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号