首页> 外文学位 >Output Function Optimization for Faster Convergence Rate in Underactuated Bipedal Walking Control
【24h】

Output Function Optimization for Faster Convergence Rate in Underactuated Bipedal Walking Control

机译:欠驱动双足行走控制中更快收敛速度​​的输出函数优化

获取原文
获取原文并翻译 | 示例

摘要

Bipedal walking control has been studied for decades. Because of the variant degrees of freedom of the robot during walking, underactuation does occur in some phases of the walking process. Underactuation is defined as the situation in which the number of the actuators is less than the degrees of freedom of the robot. In general, underactuated cases are harder to be handled than fully-actuated cases due to the lack of control effort at the unactuated joints. As a result, underactuation in bipedal walking control has always been one of the main issues in achieving walking stabilization.;Previously, underactuated bipedal walking stabilization has been achieved based on the nonlinear control theories. The concept of Hybrid-Zero-Dynamics (HZD) has been introduced, and the stability of walking has been formally evaluated using the method of Poincar'e map. The output functions are defined based on the desired walking pattern. By applying feedback control law through input-output feedback linearization, asymptotically stable walking can be achieved. More recently, time-dependent orbital stabilization of underactuated bipedal walking has also been realized by including time-dependent desired gait in the output functions. In addition, a stability condition is established to check the stability of the full-order system instead of the internal dynamics only. In both cases, though the converging rate of the output functions to zero is assumed by the input-output feedback linearization design, actual convergence rate of the robot to the desired trajectories sill depends on the behavior of the resulting internal dynamics and as such, could still be quite slow.;In the above work, input-output feedback linearization has been utilized in the controller design of underactuated bipedal walking control. With this design methodology, although the output functions can be driven to zero exponentially fast, the overall rate of convergence of the robot to the desired trajectories still depends on the behavior of the internal dynamics. Since internal dynamics only depend on the output function definitions, it is thus interesting to see how different definitions of output functions affect the behavior of the resulting internal dynamics, which is the focus of this thesis.;Specifically, the output functions in those previous studies are defined as some combinations of the tracking errors between the actual joint positions and the desired positions only, which leads to relative degrees of to be two for each output. In this thesis, the output functions are broadened to a larger class that could include the velocity tracking errors as well, resulting in outputs of relative degree one only. Though for the embedded velocity terms leading to the higher dimensions of internal dynamics and making the analysis of the biped system harder, the more general form of the output function definitions allows the resulting internal dynamics to be further optimized for a faster overall rate of convergence of the robot to the desired trajectories. This strategy is shown to yield control solutions that have a faster rate of convergence to the desired walking pattern and better robustness to external perturbations.;Finally, the proposed control strategy is simulated on a planar robot with five revolute joints, point feet, and a torso. Simulation results show the validity of the proposed controller design and realization of the orbital stabilization of bipedal walking. Improvements in the overall rate of convergence and the robustness to external forces will be shown in the comparison with the controller design in previous studies.
机译:双足步行控制已经研究了数十年。由于机器人在行走过程中的自由度有所不同,因此在行走过程的某些阶段的确会发生欠驱动。欠驱动被定义为这样的情况,其中致动器的数量小于机器人的自由度。通常,由于未动作关节缺乏控制力,因此动作不足的情况比完全动作的情况更难处理。因此,双足步行控制中的欠驱动一直是实现步行稳定的主要问题之一。以前,基于非线性控制理论已经实现了欠驱动的双足步行稳定。介绍了混合零动态(HZD)的概念,并使用庞加莱地图方法正式评估了步行的稳定性。输出功能是根据所需的行走方式定义的。通过输入输出反馈线性化应用反馈控制律,可以实现渐近稳定的行走。最近,通过在输出函数中包括时间相关的期望步态,还实现了欠驱动的双足步行的时间相关的轨道稳定。此外,建立稳定性条件来检查全序系统的稳定性,而不是仅检查内部动力学。在这两种情况下,尽管输入-输出反馈线性化设计均假定输出函数的收敛速度为零,但机器人到所需轨迹底线的实际收敛速度取决于最终内部动力学的行为,因此,在上述工作中,输入-输出反馈线性化已被用于欠驱动双足行走控制的控制器设计中。使用这种设计方法,尽管可以将输出函数快速指数级地驱至零,但机器人到所需轨迹的总收敛速度仍取决于内部动力学的行为。由于内部动力学仅取决于输出函数的定义,因此有趣的是观察输出函数的不同定义如何影响所得内部动力学的行为,这是本论文的重点。被定义为仅在实际关节位置和所需位置之间的跟踪误差的一些组合,这导致每个输出的相对度为2。在本文中,输出函数被扩展到一个更大的类别,该类别可能还包括速度跟踪误差,从而仅产生相对等级1的输出。尽管对于嵌入式速度项而言,内部动力学的维度更高,并且使Biped系统的分析更加困难,但输出函数定义的更一般形式可以进一步优化最终的内部动力学,以实现更快的总体收敛速度。机器人到所需的轨迹。结果表明,该策略可以产生具有更快收敛速度​​的控制解决方案,并且可以更好地抵抗外部干扰。最后,在具有五个旋转关节,点脚和躯干。仿真结果表明了所提出的控制器设计的有效性以及实现双足行走的轨道稳定性。与先前研究中的控制器设计相比,将显示总体收敛速度的提高和对外力的鲁棒性。

著录项

  • 作者

    Chan, Wai Kei.;

  • 作者单位

    Purdue University.;

  • 授予单位 Purdue University.;
  • 学科 Robotics.;Mechanical engineering.
  • 学位 M.S.M.E.
  • 年度 2017
  • 页码 78 p.
  • 总页数 78
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号