首页> 外文学位 >An investigation of parity and time-reversal symmetry breaking in tight-binding lattices.
【24h】

An investigation of parity and time-reversal symmetry breaking in tight-binding lattices.

机译:对紧密绑定晶格中奇偶校验和时间反转对称性的研究。

获取原文
获取原文并翻译 | 示例

摘要

More than a decade ago, it was shown that non-Hermitian Hamiltonians with combined parity (P) and time-reversal (T) symmetry exhibit real eigenvalues over a range of parameters. Since then, the field of PT symmetry has seen rapid progress on both the theoretical and experimental fronts. These effective Hamiltonians are excellent candidates for describing open quantum systems with balanced gain and loss. Nature seems to be replete with examples of PT-symmetric systems; in fact, recent experimental investigations have observed the effects of PT symmetry breaking in systems as diverse as coupled mechanical pendula, coupled optical waveguides, and coupled electrical circuits.;Recently, PT-symmetric Hamiltonians for tight-binding lattice models have been extensively investigated. Lattice models, in general, have been widely used in physics due to their analytical and numerical tractability. Perhaps one of the best systems for experimentally observing the effects of PT symmetry breaking in a one-dimensional lattice with tunable hopping is an array of evanescently-coupled optical waveguides. The tunneling between adjacent waveguides is tuned by adjusting the width of the barrier between them, and the imaginary part of the local refractive index provides the loss or gain in the respective waveguide. Calculating the time evolution of a wave packet on a lattice is relatively straightforward in the tight-binding model, allowing us to make predictions about the behavior of light propagating down an array of PT-symmetric waveguides.;In this thesis, I investigate the the strength of the PT-symmetric phase (the region over which the eigenvalues are purely real) in lattices with a variety of PT-symmetric potentials. In Chapter 1, I begin with a brief review of the postulates of quantum mechanics, followed by an outline of the fundamental principles of PT-symmetric systems. Chapter 2 focuses on one-dimensional uniform lattices with a pair of PT-symmetric impurities in the case of open boundary conditions. I find that the PT phase is algebraically fragile except in the case of closest impurities, where the PT phase remains nonzero. In Chapter 3, I examine the case of periodic boundary conditions in uniform lattices, finding that the PT phase is not only nonzero, but also independent of the impurity spacing on the lattice. In addition, I explore the time evolution of a single-particle wave packet initially localized at a site. I find that in the case of periodic boundary conditions, the wave packet undergoes a preferential clockwise or counterclockwise motion around the ring. This behavior is quantified by a discrete momentum operator which assumes a maximum value at the PT-symmetry-breaking threshold.;In Chapter 4, I investigate nonuniform lattices where the parity-symmetric hopping between neighboring sites can be tuned. I find that the PT phase remains strong in the case of closest impurities and fragile elsewhere. Chapter 5 explores the effects of the competition between localized and extended PT potentials on a lattice. I show that when the short-range impurities are maximally separated on the lattice, the PT phase is strengthened by adding short-range loss in the broad-loss region. Consequently, I predict that a broken PT symmetry can be restored by increasing the strength of the short-range impurities. Lastly, Chapter 6 summarizes my salient results and discusses areas which can be further developed in future research.
机译:十多年前,研究表明,具有奇偶校验(P)和时间反转(T)对称性的非Hermitian哈密顿量在一系列参数上显示出真实的特征值。从那时起,PT对称性领域在理论和实验领域都得到了迅速的发展。这些有效的哈密顿量是描述具有平衡增益和损耗的开放量子系统的绝佳候选者。大自然似乎充满了PT对称系统的例子。实际上,最近的实验研究已经观察到PT对称性破坏在各种系统中的作用,例如耦合机械摆,耦合光波导和耦合电路。;最近,对紧密对称晶格模型的PT对称哈密顿量进行了广泛研究。通常,由于格子模型的分析和数值可处理性,它们已在物理学中广泛使用。在实验上观察具有可调跳变的一维晶格中PT对称性破坏效果的最佳系统之一是is散耦合光波导阵列。通过调整相邻波导之间的势垒宽度,可以调整相邻波导之间的隧穿,局部折射率的虚部在各个波导中提供损耗或增益。在紧密绑定模型中,计算晶格上波包的时间演化相对简单,这使我们可以对沿PT对称波导阵列传播的光的行为做出预测。具有各种PT对称电位的晶格中PT对称相(特征值在其中纯实的区域)的强度。在第一章中,我首先简要回顾了量子力学的假设,然后概述了PT对称系统的基本原理。第2章重点讨论在开放边界条件下具有一对PT对称杂质的一维均匀晶格。我发现PT相在代数上很脆弱,除非是最接近的杂质,其中PT相保持为非零。在第三章中,我研究了均匀晶格中周期性边界条件的情况,发现PT相不仅不为零,而且与晶格上的杂质间距无关。此外,我探索了最初位于某个站点的单粒子波包的时间演变。我发现在周期性边界条件的情况下,波包在环周围经历了优先的顺时针或逆时针运动。此行为由离散动量算子量化,该动量算子在PT对称性破损阈值处假定最大值。在第4章中,我研究了非均匀晶格,可以在其中调整相邻站点之间的奇偶对称跳变。我发现,在最接近的杂质和其他地方易碎的情况下,PT相仍然很强。第5章探讨了晶格上局部和扩展PT势之间竞争的影响。我表明,当短程杂质在晶格上最大程度地分离时,PT相会通过在宽损失区增加短程损耗而得到增强。因此,我预测可以通过提高短程杂质的强度来恢复破碎的PT对称性。最后,第六章总结了我的主要成果,并讨论了可以在未来研究中进一步发展的领域。

著录项

  • 作者

    Scott, Derek Douglas.;

  • 作者单位

    Purdue University.;

  • 授予单位 Purdue University.;
  • 学科 Physics Optics.;Physics Theory.;Applied Mechanics.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 100 p.
  • 总页数 100
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号