首页> 外文学位 >Cooling Strategy for Effective Automotive Power Trains: 3D Thermal Modeling and Multi-Faceted Approach for Integrating Thermoelectric Modules into Proton Exchange Membrane Fuel Cell Stack.
【24h】

Cooling Strategy for Effective Automotive Power Trains: 3D Thermal Modeling and Multi-Faceted Approach for Integrating Thermoelectric Modules into Proton Exchange Membrane Fuel Cell Stack.

机译:有效汽车动力总成的冷却策略:3D热建模和将热电模块集成到质子交换膜燃料电池堆中的多面体方法。

获取原文
获取原文并翻译 | 示例

摘要

Current hybrid vehicle and/or Fuel Cell Vehicle (FCV) use both FC and an electric system. The sequence of the electric power train with the FC system is intended to achieve both better fuel economies than the conventional vehicles and higher performance. Current hybrids use regenerative braking technology, which converts the vehicles kinetic energy into electric energy instead of wasting it. A hybrid vehicle is much more fuel efficient than conventional Internal Combustion (IC) engine and has less environmental impact.;The new hybrid vehicle technology with it's advanced with configurations (i.e. Mechanical intricacy, advanced driving modes etc) inflict an intrusion with the existing Thermal Management System (TMS) of the conventional vehicles. This leaves for the opportunity for now thermal management issues which needed to be addressed. Till date, there has not been complete literature on thermal management issued of FC vehicles. The primary focus of this dissertation is on providing better cooling strategy for the advanced power trains. One of the cooling strategies discussed here is the thermo-electric modules.;The 3D Thermal modeling of the FC stack utilizes a Finite Differencing heat approach method augmented with empirical boundary conditions is employed to develop 3D thermal model for the integration of thermoelectric modules with Proton Exchange Membrane fuel cell stack. Hardware-in-Loop was designed under pre-defined drive cycle to obtain fuel cell performance parameters along with anode and cathode gas flow-rates and surface temperatures. The FC model, combined experimental and finite differencing nodal net work simulation modeling approach which implemented heat generation across the stack to depict the chemical composition process. The structural and temporal temperature contours obtained from this model are in compliance with the actual recordings obtained from the infrared detector and thermocouples. The Thermography detectors were set-up through dual band thermography to neutralize the emissivity and to give several dynamic ranges to achieve accurate temperature measurements. The thermocouples network was installed to provide a reference signal.;The model is harmonized with thermo-electric modules with a modeling strategy, which enables optimize better temporal profile across the stack. This study presents the improvement of a 3D thermal model for proton exchange membrane fuel cell stack along with the interfaced thermo-electric module. The model provided a virtual environment using a model-based design approach to assist the design engineers to manipulate the design correction earlier in the process and eliminate the need for costly and time consuming prototypes.
机译:当前的混合动力车辆和/或燃料电池车辆(FCV)同时使用燃料电池和电气系统。配备FC系统的动力传动系统顺序旨在实现比传统车辆更好的燃油经济性和更高的性能。当前的混合动力车使用再生制动技术,该技术将车辆的动能转化为电能,而不是浪费电能。混合动力汽车比传统的内燃机具有更高的燃油效率,对环境的影响也较小。新的混合动力汽车技术凭借其先进的配置(例如,机械复杂性,先进的驾驶模式等)对现有的热力系统造成了干扰。常规车辆的管理系统(TMS)。这为现在需要解决的热管理问题留下了机会。迄今为止,还没有关于FC车辆的热管理的完整文献。本文的主要重点是为高级动力总成提供更好的冷却策略。这里讨论的冷却策略之一是热电模块。FC烟囱的3D热建模利用有限差分热方法,并结合经验边界条件来开发3D热模型,以将热电模块与Proton集成在一起。更换膜燃料电池堆。硬件在环是在预定义的驱动周期下设计的,以获得燃料电池的性能参数以及阳极和阴极气体的流量以及表面温度。 FC模型,结合了实验和有限差分节点网络模拟建模方法,该方法通过在整个烟囱中产生热量来描述化学成分过程。从该模型获得的结构和时间温度轮廓与从红外探测器和热电偶获得的实际记录一致。热成像检测器通过双波段热成像设置,以抵消发射率并提供几个动态范围以实现准确的温度测量。安装了热电偶网络以提供参考信号。该模型与具有建模策略的热电模块相协调,从而可以优化整个堆栈的更好的时间分布。这项研究提出了质子交换膜燃料电池堆3D热模型以及接口热电模块的改进。该模型使用基于模型的设计方法提供了一个虚拟环境,以帮助设计工程师在流程的早期阶段进行设计更正,从而消除了对昂贵且耗时的原型的需求。

著录项

  • 作者

    Ramani, Dilip.;

  • 作者单位

    Arizona State University.;

  • 授予单位 Arizona State University.;
  • 学科 Automotive engineering.;Electrical engineering.;Mechanical engineering.
  • 学位 M.S.
  • 年度 2014
  • 页码 70 p.
  • 总页数 70
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号