首页> 外文学位 >On algebras associated to finite ranked posets and combinatorial topology: The Koszul, numerically Koszul and Cohen-Macaulay properties.
【24h】

On algebras associated to finite ranked posets and combinatorial topology: The Koszul, numerically Koszul and Cohen-Macaulay properties.

机译:关于与有限排序的位姿和组合拓扑相关的代数:Koszul,数值上的Koszul和Cohen-Macaulay属性。

获取原文
获取原文并翻译 | 示例

摘要

This dissertation studies new connections between combinatorial topology and homological algebra. To a finite ranked poset Gamma we associate a finite-dimensional quadratic graded algebra RGamma. Assuming Gamma satisfies a combinatorial condition known as uniform, RGamma is related to a well-known algebra, the splitting algebra AGamma. First introduced by Gelfand, Retakh, Serconek and Wilson, splitting algebras originated from the problem of factoring non-commuting polynomials.;Given a finite ranked poset Gamma, we ask a standard question in homological algebra: Is RGamma Koszul? The Koszulity of RGamma is related to a combinatorial topology property of Gamma known as Cohen-Macaulay. One of the main theorems of this dissertation is: If Gamma is a finite ranked cyclic poset, then Gamma is Cohen-Macaulay if and only if Gamma is uniform and RGamma is Koszul.;We also define a new generalization of Cohen-Macaulay: weakly Cohen-Macaulay. The class of weakly Cohen-Macaulay finite ranked posets includes posets with disconnected open subintervals. We prove: if Gamma is a finite ranked cyclic poset, then Gamma is weakly Cohen-Macaulay if and only if RGamma is Koszul. Finally, we address the notion of numerical Koszulity. We show that there exist algebras RGamma that are numerically Koszul but not Koszul and give a general construction for such examples. This dissertation includes unpublished co-authored material.
机译:本文研究了组合拓扑与同构代数之间的新联系。将有限维二次代数RGamma关联到有限排名的Poset Gamma。假设Gamma满足称为统一的组合条件,则RGamma与众所周知的代数,即分裂代数AGamma有关。首先由Gelfand,Retakh,Serconek和Wilson引入,分裂代数起源于分解非交换多项式的问题。考虑到有限排名的Poset Gamma,我们问同调代数中的一个标准问题:RGamma Koszul吗? RGamma的Koszulity与称为Cohen-Macaulay的Gamma的组合拓扑属性有关。本论文的主要定理之一是:如果伽玛是一个有限排序的循环摆球,那么当且仅当伽玛是均匀的且RGamma是科苏尔时,伽玛才是科恩-马考莱。科恩·马考拉(Cohen-Macaulay)。弱Cohen-Macaulay有限排序的球型的类别包括具有断开的开放子区间的球型。我们证明:如果伽马是一个有限排序的循环波塞,那么当且仅当伽马是科苏尔时,伽马才是弱Cohen-Macaulay。最后,我们讨论了数字科索性的概念。我们证明存在代数RGamma,这些代数在数值上是科苏尔而不是科苏尔,并给出了此类示例的一般构造。本论文包括未发表的合着材料。

著录项

  • 作者

    Kloefkorn, Tyler.;

  • 作者单位

    University of Oregon.;

  • 授予单位 University of Oregon.;
  • 学科 Mathematics.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 78 p.
  • 总页数 78
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号