首页> 外文学位 >Materials Design for Block Copolymer Lithography.
【24h】

Materials Design for Block Copolymer Lithography.

机译:嵌段共聚物光刻的材料设计。

获取原文
获取原文并翻译 | 示例

摘要

Block copolymers (BCPs) have attracted a great deal of scientific and technological interest due to their ability to spontaneously self-assemble into dense periodic nanostructures with a typical length scale of 5 to 50 nm. The use of self-assembled BCP thin-films as templates to form nanopatterns over large-area is referred to as BCP lithography. Directed self-assembly of BCPs is now viewed as a viable candidate for sub-20 nm lithography by the semiconductor industry. However, there are multiple aspects of assembly and materials design that need to be addressed in order for BCP lithography to be successful. These include substrate modification with polymer brushes or mats, tailoring of the block copolymer chemistry, understanding thin-film assembly and developing epitaxial like methods to control long range alignment.;The rational design, synthesis and self-assembly of block copolymers with large interaction parameters (chi) is described in the first part of this dissertation. Two main blocks were chosen for introducing polarity into the BCP system, namely poly(4-hydroxystyrene) and poly(2-vinylpyridine). Each of these blocks are capable of ligating Lewis acids which can increase the etch contrast between the blocks allowing for facile pattern transfer to the underlying substrate. These BCPs were synthesized by living anionic polymerization and showed excellent control over molecular weight and dispersity, providing access to sub 5-nm domain sizes.;Polymer brushes consist of a polymer chain with one end tethered to the surface and have wide applicability in tuning surface energy, forming responsive surfaces and increasing biocompatibility. In the second part of the dissertation, we present a universal method to grow dense polymer brushes on a wide range of substrates and combine this chemistry with BCP assembly to fabricate nanopatterned polymer brushes. This is the first demonstration of introducing additional functionality into a BCP directing layer and opens up a wide slew of applications from directed self-assembly to biomaterial engineering.
机译:嵌段共聚物(BCP)由于具有自发自组装成5至50 nm典型长度尺度的致密周期性纳米结构的能力,因此吸引了许多科学技术兴趣。使用自组装BCP薄膜作为模板在大面积上形成纳米图案的过程称为BCP光刻。 BCP的直接自组装现在被半导体行业视为低于20 nm光刻的可行候选方案。但是,为了使BCP光刻成功,需要解决装配和材料设计的多个方面。其中包括用聚合物刷或垫子对基材进行改性,调整嵌段共聚物的化学性质,了解薄膜组装以及开发类似外延的方法来控制长距离对齐;;具有大相互作用参数的嵌段共聚物的合理设计,合成和自组装(chi)在本论文的第一部分中进行了描述。选择了两个用于将极性引入BCP系统的主要嵌段,即聚(4-羟基苯乙烯)和聚(2-乙烯基吡啶)。这些块中的每一个都能够连接路易斯酸,这可以增加块之间的蚀刻对比度,从而允许将图案容易地转移到下面的衬底上。这些BCP通过活性阴离子聚合反应合成,对分子量和分散性表现出出色的控制能力,可访问5nm以下的区域尺寸。;聚合物刷由一端束缚在表面的聚合物链组成,在调节表面方面具有广泛的适用性能量,形成响应性表面并提高生物相容性。在论文的第二部分中,我们提出了一种通用的方法,可以在各种基材上生长致密的聚合物刷,并将这种化学方法与BCP组装相结合,以制造出纳米图案的聚合物刷。这是向BCP引导层引入附加功能的首次演示,并打开了从定向自组装到生物材料工程的广泛应用。

著录项

  • 作者

    Sweat, Daniel Patrick.;

  • 作者单位

    The University of Wisconsin - Madison.;

  • 授予单位 The University of Wisconsin - Madison.;
  • 学科 Materials science.;Polymer chemistry.;Molecular chemistry.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 197 p.
  • 总页数 197
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号