首页> 外文学位 >The synthesis and characterization of novel biomaterials from natural building blocks: Biomaterials research: Past, present, and future directions, and, Saccharide-derived polymers as protein resistant biomaterials, and, Saccharide-peptide copolymers for gene delivery applications, and, Saccharide-peptide copolymer hydrogels for extracellular scaffold design.
【24h】

The synthesis and characterization of novel biomaterials from natural building blocks: Biomaterials research: Past, present, and future directions, and, Saccharide-derived polymers as protein resistant biomaterials, and, Saccharide-peptide copolymers for gene delivery applications, and, Saccharide-peptide copolymer hydrogels for extracellular scaffold design.

机译:从天然构件中合成和表征新型生物材料:生物材料研究:过去,现在和未来的方向,以及,糖衍生的聚合物作为抗蛋白质生物材料,以及用于基因传递应用的糖肽共聚物,以及糖肽共聚物水凝胶用于细胞外支架设计。

获取原文
获取原文并翻译 | 示例

摘要

Chapter 1 of this dissertation reviews the past, present, and future directions of biomaterial research and application. A brief history of the origins of biomaterial use is followed by a more detailed description of contemporary biomaterials. Current and future directions of biomaterial research are then presented with attention given specifically to surface modified contemporary biomaterials, hydrogels in tissue engineering, and soluble biomaterials for gene therapy applications. These applications are further subdivided into the two major strategies for biomaterial development: naturally derived biopolymers or synthetic polymers as biomaterials. A brief introduction of our laboratory's goal to produce novel biomaterial structure from natural building blocks (including saccharides and peptides) is then presented.; Chapter 2 of this dissertation outlines our design of a series of saccharide-derived polymers including: two side-chain methylether polyesters, a side-chain methylether polyamide, and a partially hydroxylated side-chain methylether polyamide. Each of these polymers was synthesized by condensation polymerization. The two novel saccharide-derived side-chain methylether polyesters have excellent resistance toward non-specific protein adsorption as demonstrated by surface plasmon resonance. In addition, these polymers combine biodegradability and functionalizability, giving them high versatility and excellent potential for use in non-fouling applications. The low cytoxicity of this series of polymers indicates that they may be useful in biomaterial applications.; Chapter 3 of this dissertation describes the synthesis of a series of cationic saccharide-peptide copolymers for use as a new class of biomaterials. The most effective known cationic gene delivery systems, such as polyethylenimine (PEI) and poly-L-lysine (PLL), have a large degree of cytotoxicity limiting their usefulness in clinical applications. Using a ground-up approach we synthesized a class of carbohydrate-peptide derived polymers to be used as effective and safe gene carriers. These polymers are derived from benign and inexpensive saccharide and carbohydrate starting materials, and were designed to have little relative cationic charge density along the polymer chain, making them less liable to be cytotoxic entities. After electrophoretic mobility shift assays the polymers were shown to effectively complex plasmid DNA. Atomic force microscopy imaging showed the average polyplex size was between 50-200 nm in diameter, making them candidates for gene delivery vectors. Luciferase gene delivery assays then proved the polymers to be more effective than a PLL control in DNA transport to Cos-7 cells' nuclei. Cell viability testing then proved these polymers were far less cytotoxic than the PLL control, lending them the possibility of application in gene therapy. This research describes a class of polymers that are safe and effective for gene delivery with a highly adaptable structure for further optimization.; Chapter 4 of this dissertation describes the synthesis of a series of saccharide-peptide derived copolymers with varying side-chains for use as hydrogel extracellular matrices (ECMs) for tissue engineering applications. These polymers were designed to have various charges at physiological pH (neutral, zwitterionic, cationic, and anionic) and were screened first by aqueous solubility, then cross-linking properties, and finally by their capacity to allow cell growth on the hydrogel surface. We found that an anionic, glutamic acid-derived copolymer system combined high aqueous solubility, efficient cross-linking, and excellent cell growth capabilities. In a final attempt to control some aspect of cell behavior the hydrogel was functionatized with a cell adhesion ligand (RGD) which increased cell adhesion rates versus controls having no RGD.
机译:本文的第一章回顾了生物材料研究和应用的过去,现在和未来的方向。在简要介绍生物材料使用的历史之后,再详细介绍当代生物材料。然后介绍生物材料研究的当前和未来方向,并特别关注表面改性的当代生物材料,组织工程中的水凝胶以及用于基因治疗的可溶性生物材料。这些应用程序进一步细分为生物材料开发的两个主要策略:天然衍生的生物聚合物或合成聚合物作为生物材料。然后简要介绍了我们实验室从天然结构单元(包括糖和肽)生产新型生物材料结构的目标。本文的第二章概述了我们设计的一系列糖基聚合物,包括:两种侧链甲基醚聚酯,一种侧链甲基醚聚酰胺和一种部分羟基化的侧链甲基醚聚酰胺。这些聚合物均通过缩聚反应合成。如表面等离振子共振所表明的,两种新颖的糖衍生的侧链甲基醚聚酯具有出色的抗非特异性蛋白质吸附能力。此外,这些聚合物兼具生物降解性和功能性,使其具有较高的通用性,并在非污垢应用中具有出色的潜力。该系列聚合物的低细胞毒性表明它们可能在生物材料应用中有用。本论文的第3章描述了一系列阳离子糖-肽共聚物的合成,该共聚物被用作一类新型的生物材料。最有效的已知阳离子基因传递系统,例如聚乙烯亚胺(PEI)和聚L-赖氨酸(PLL),具有很大程度的细胞毒性,限制了它们在临床应用中的实用性。使用一种全新的方法,我们合成了一类碳水化合物肽衍生的聚合物,可用作有效且安全的基因载体。这些聚合物衍生自良性且廉价的糖类和碳水化合物原料,并被设计为沿聚合物链具有相对较小的阳离子电荷密度,从而使其不太容易成为细胞毒性实体。电泳迁移率变动分析后,聚合物显示有效地复合质粒DNA。原子力显微镜成像显示平均多链体大小在直径50-200 nm之间,使其成为基因传递载体的候选对象。然后,荧光素酶基因传递测定证明了该聚合物在DNA转运至Cos-7细胞核中比PLL对照更有效。然后,细胞活力测试证明了这些聚合物的细胞毒性远低于PLL对照,从而使其有可能应用于基因治疗。这项研究描述了一类安全有效的基因传递聚合物,其结构高度适应进一步优化。本论文的第4章描述了一系列具有不同侧链的糖-肽衍生的共聚物的合成,以用作组织工程应用的水凝胶细胞外基质(ECM)。这些聚合物被设计为在生理pH值(中性,两性离子,阳离子和阴离子)下具有各种电荷,并首先通过水溶性,然后交联的性能,最后通过它们在水凝胶表面上允许细胞生长的能力进行筛选。我们发现,一种由谷氨酸衍生的阴离子共聚物体系具有很高的水溶性,有效的交联性和优异的细胞生长能力。在控制细胞行为的某些方面的最终尝试中,将水凝胶用细胞粘附配体(RGD)功能化,与没有RGD的对照组相比,RGD可以提高细胞粘附率。

著录项

  • 作者

    Metzke, Mark Adam.;

  • 作者单位

    University of California, Irvine.;

  • 授予单位 University of California, Irvine.;
  • 学科 Chemistry Biochemistry.; Chemistry Organic.
  • 学位 Ph.D.
  • 年度 2006
  • 页码 193 p.
  • 总页数 193
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 生物化学;有机化学;
  • 关键词

  • 入库时间 2022-08-17 11:40:49

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号