首页> 外文学位 >Visual-Inertial Odometry on Resource-Constrained Systems.
【24h】

Visual-Inertial Odometry on Resource-Constrained Systems.

机译:资源受限系统上的视觉惯性测距法。

获取原文
获取原文并翻译 | 示例

摘要

In this work, we focus on the problem of pose estimation in unknown environments, using the measurements from an inertial measurement unit (IMU) and a single camera. We term this estimation task visual-inertial odometry (VIO), in analogy to the well-known visual-odometry (VO) problem. Our focus is on developing VIO algorithms for high-precision, consistent motion estimation in real time. The majority of VIO algorithms proposed to date have been developed for systems which are equipped with high-end processors and high-quality sensors. By contrast, we are interested in tracking the motion of systems that are small and inexpensive, and are equipped with limited processing and sensing resources. Such resource-constrained systems are common in application areas such as micro aerial vehicles, mobile phones, and augmented reality (AR) devices. Endowing such systems with the capability to accurately track their poses will create a host of new opportunities for commercial applications, and lower the barrier to entry in robotics research and development.;Performing accurate motion estimation on resource-constrained systems requires novel methodologies to address the challenges caused by the limited sensing and processing capabilities, and to provide guarantees for the optimal utilization of these resources. To this end, in this work, we focus on developing novel, resource- adaptive VIO algorithms based on the extended Kalman filter (EKF) formulation. Specifically, we (i) analyze the properties and performance of existing EKF-based VIO approaches, and propose a novel estimator design method, which ensures the correct observability properties of the linearized system models to improve the estimates' accuracy and consistency, (ii) present a methodology for minimizing the computational cost of the EKF-VIO algorithms, which relies on online optimization of the estimator's parameters based on the properties of the environment, (iii) propose an algorithm for joint online calibration of the spatial and temporal relationship between the visual and inertial sensors, and (iv) propose high-fidelity sensor models that enable us to process the measurements captured by rolling-shutter cameras and low-cost inertial sensors. We evaluate our estimators with various simulated and real-world data sets, which demonstrate that our proposed formulations are able to consistently and accurately track the pose of resource-constrained systems in real time.
机译:在这项工作中,我们使用惯性测量单元(IMU)和单个摄像机的测量结果,着重研究未知环境中的姿态估计问题。我们将这个估算任务称为视觉惯性里程(VIO),类似于众所周知的视觉里程(VO)问题。我们的重点是开发用于实时进行高精度,一致运动估计的VIO算法。迄今为止,大多数提议的VIO算法都是针对配备高端处理器和高质量传感器的系统开发的。相比之下,我们对跟踪小型且廉价的且配备有有限处理和传感资源的系统的运动感兴趣。这种资源受限的系统在诸如微型飞行器,移动电话和增强现实(AR)设备的应用领域中是常见的。赋予此类系统能够准确跟踪其姿势的能力将为商业应用创造大量新机会,并降低进入机器人技术研究和开发的门槛。在资源受限的系统上进行准确的运动估计需要新颖的方法来解决有限的传感和处理能力所带来的挑战,并为这些资源的最佳利用提供了保证。为此,在这项工作中,我们专注于基于扩展卡尔曼滤波器(EKF)公式开发新颖的,资源自适应的VIO算法。具体来说,我们(i)分析现有的基于EKF的VIO方法的属性和性能,并提出一种新颖的估计器设计方法,该方法可确保线性化系统模型具有正确的可观察性,从而提高估计的准确性和一致性;(ii)提出了一种最小化EKF-VIO算法的计算成本的方法,该方法依赖于基于环境属性的估计器参数的在线优化,(iii)提出了一种用于在线联合评估之间的时空关系的算法视觉和惯性传感器,以及(iv)提出了高保真传感器模型,使我们能够处理由卷帘相机和低成本惯性传感器捕获的测量值。我们使用各种模拟和现实世界的数据集评估我们的估算器,这表明我们提出的公式能够始终如一地,准确地跟踪资源受限系统的状态。

著录项

  • 作者

    Li, Mingyang.;

  • 作者单位

    University of California, Riverside.;

  • 授予单位 University of California, Riverside.;
  • 学科 Electrical engineering.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 224 p.
  • 总页数 224
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号