首页> 外文学位 >Regulation of dynamin-related protein 1-mediated mitochondrial fission by reversible phosphorylation and its contribution to neuronal survival following injury.
【24h】

Regulation of dynamin-related protein 1-mediated mitochondrial fission by reversible phosphorylation and its contribution to neuronal survival following injury.

机译:通过可逆的磷酸化调节动力相关蛋白1介导的线粒体裂变及其对损伤后神经元存活的贡献。

获取原文
获取原文并翻译 | 示例

摘要

Mitochondria are dynamic organelles that constantly undergo opposing fission and fusion events which impact many aspects of mitochondrial and cellular homeostasis including bioenergetic activity, calcium buffering and organelle transport. The large GTPase dynamin-related protein 1 (Drp1) acts as a mechanoenzyme to catalyze fission of mitochondria. Drp1 activity is regulated through a series of reversible posttranslational modifications. Phosphorylation of the conserved serine residue, S656, by cAMP dependent protein kinase A (PKA) acts as a master regulator of Drp1 activity. Two phosphatases oppose PKA by dephosporylating Drp1 S656, a mitochondrial isoform of protein phosphatase 2A and the calcium-calmodulin dependent phosphatase calcineurin (CaN). Here I report the characterization of a conserved CaN docking site on Drp1, an LxVP motif, just upstream of the Drp1 S656 site. Mutational modification of the Drp1 LxVP motif resulted in selective bidirectional modulation of formation of the CaN:Drp1 complex. Stability of the CaN:Drp1 LxVP motif mutant complexes was qualitatively described by affinity purification and quantitatively described by isothermal titration calorimetry. Stability of the CaN:Drp1 complex was found to directly correlate with Drp1 S656 dephosphorylation kinetics as demonstrated by studies conducted in vitro and in intact cells. Further, the CaN:Drp1 signaling axis was shown to shape basal mitochondrial morphology in a heterologous cell line system and in primary hippocampal neurons. Finally, disruption of the CaN:Drp1 signaling axis was found to protect neurons from oxygen-glucose deprivation, an in vitro model of ischemic injury. While these results suggest that the CaN:Drp1 signaling axis may be a potential target for neuroprotective therapeutic exploitation, the mechanism by which disruption of the CaN:Drp1 signaling axis specifically and mitochondrial elongation generally results in resistance to ischemic injury remains unknown.;Additional studies reported here demonstrate that mitochondrial fragmentation remains a prominent feature of injured neurons regardless of the fidelity of the CaN:Drp1 signaling axis. Mitochondrial fragmentation at the time of injury was found to occur in a Drp1-independent manner. Chronic mitochondrial elongation was also found to leave unaltered the ability of neurons to detoxify reactive oxygen species, buffer intracellular calcium and supply ATP for homeostatic function.
机译:线粒体是动态的细胞器,不断发生相反的裂变和融合事件,影响线粒体和细胞稳态的许多方面,包括生物能活动,钙缓冲和细胞器运输。大的GTPase动力相关蛋白1(Drp1)作为一种机械酶来催化线粒体的裂变。 Drp1活性通过一系列可逆的翻译后修饰进行调控。 cAMP依赖性蛋白激酶A(PKA)对保守的丝氨酸残基S656的磷酸化作用是Drp1活性的主要调节剂。通过磷酸化Drp1 S656,蛋白磷酸酶2A的线粒体同工型和钙钙调蛋白依赖性磷酸酶钙调神经磷酸酶(CaN)来磷酸化,两个磷酸酶与PKA相对。在这里,我报告了在Drp1 S656位点上游的LxVP基序Drp1上保守的CaN停靠位点的特征。 Drp1 LxVP基序的突变修饰导致CaN:Drp1复合物形成的选择性双向调节。通过亲和纯化定性描述CaN:Drp1 LxVP基序突变体复合物的稳定性,并通过等温滴定量热法定量描述CaN:Drp1 LxVP基序突变体复合物的稳定性。发现CaN:Drp1复合物的稳定性与Drp1 S656的去磷酸化动力学直接相关,这在体外和完整细胞中进行了研究。此外,CaN:Drp1信号轴显示出异源细胞系和原代海马神经元中的基底线粒体形态。最后,发现CaN:Drp1信号轴的破坏可以保护神经元免受氧-葡萄糖剥夺,这是一种缺血性损伤的体外模型。尽管这些结果表明CaN:Drp1信号轴可能是神经保护性治疗的潜在靶标,但CaN:Drp1信号轴的特异性破坏和线粒体伸长通常导致对缺血性损伤的抵抗机制仍然未知。此处报道的结果表明,无论CaN:Drp1信号轴的保真度如何,线粒体破碎仍然是受损神经元的突出特征。发现损伤时线粒体断裂以Drp1非依赖性方式发生。还发现慢性线粒体伸长不会改变神经元排毒活性氧,缓冲细胞内钙和提供ATP的功能。

著录项

  • 作者

    Slupe, Andrew Michael.;

  • 作者单位

    The University of Iowa.;

  • 授予单位 The University of Iowa.;
  • 学科 Biology Molecular.;Biology Cell.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 224 p.
  • 总页数 224
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号