首页> 外文学位 >Fundamental Insights into Chemical Looping Combustion (CLC): A Materials Characterization Approach to Understanding Mechanisms and Size Effects in Oxygen Carrier Performance
【24h】

Fundamental Insights into Chemical Looping Combustion (CLC): A Materials Characterization Approach to Understanding Mechanisms and Size Effects in Oxygen Carrier Performance

机译:化学循环燃烧(CLC)的基本见解:一种材料表征方法,用于了解氧气载体性能的机理和尺寸影响

获取原文
获取原文并翻译 | 示例

摘要

This work aims to develop fundamental insights about the underlying surface and bulk chemical processes instrumental to the efficiency of chemical looping combustion (CLC). CLC, which uses a solid-state oxygen carrier (e.g., metal oxides) to drive hydrocarbon combustion, is a promising combustion alternative that minimizes byproduct formation and facilities capture of CO2. In this work, we compare the performance of different transition metal oxides, namely iron, copper, cobalt, manganese, and nickel oxides, as oxygen carriers in CLC using CH4 as the reducing agent. Experiments used a continuous flow reactor across temperatures ranging from 500 to 800 °C and feed flowrates from 12.5 to 250 h-1. In addition to monitoring size-, temperature- and flow rate-dependent performance trends for CH4 conversion to CO2, microscopic and spectroscopic techniques were used to investigate the solid-state mechanism of oxygen carrier reduction and the coupled surface chemical and bulk material processes influencing performance. Bulk (XRD) and surface (XPS) analysis reveal that oxygen carrier reduction can be generally represented by two models, the unreacted shrinking core model (USCM) and the nuclei growth model (NNGM). The reduction of some metal oxides can also proceed via a two-stage solid-state mechanism; for example, hematite reduction to magnetite follows USCM, while the subsequent reductions of magnetite to wustite and wustite to iron metal follow NNGM. Furthermore, our results reveal that minimizing the particle size promotes oxygen carrier performance, but only for metal oxides reduced according to the USCM, where metal oxide reduction initiates on the particle surface. In contrast, no benefit of decreasing particle size was observed for materials reduced according to the NNGM because the reaction initiates in the particle bulk, such that a more critical determinant of reactivity may be the available oxygen carrier volume rather than surface area. Beyond these fundamental insights, cycling experiments were also performed to provide more practical information about the effect of oxygen carrier particle size on their long-term performance in CLC applications.
机译:这项工作的目的是对有助于化学循环燃烧(CLC)效率的基础表面和整体化学过程的基础见解进行开发。 CLC使用固态氧载体(例如金属氧化物)来驱动碳氢化合物燃烧,是一种有希望的燃烧替代方法,可最大程度地减少副产物的形成和二氧化碳的捕集。在这项工作中,我们比较了使用CH4作为还原剂在CLC中作为氧载体的不同过渡金属氧化物(即铁,铜,钴,锰和镍的氧化物)的性能。实验使用的连续流反应器的温度范围为500至800°C,进料流量为12​​.5至250 h-1。除了监控CH4转化为CO2的尺寸,温度和流速相关的性能趋势外,还使用显微镜和光谱技术研究氧载体还原的固态机理以及耦合的表面化学和本体材料过程对性能的影响。 。本体(XRD)和表面(XPS)分析表明,氧载流子还原通常可以用两种模型来表示,即未反应的收缩核模型(USCM)和核生长模型(NNGM)。一些金属氧化物的还原也可以通过两阶段的固态机制进行。例如,USCM之后是赤铁矿还原为磁铁矿,而NNGM之后是随后的磁铁矿还原为威铁矿和还原为铁金属。此外,我们的结果表明,最小化颗粒尺寸可提高氧气的载流子性能,但仅适用于根据USCM还原的金属氧化物,其中金属氧化物的还原始于颗粒表面。相反,对于根据NNGM还原的材料,没有观察到减小粒径的好处,因为反应是在颗粒团块中引发的,因此反应性的一个更关键的决定因素可能是可用的氧载体体积而不是表面积。除了这些基本见解之外,还进行了循环实验,以提供有关氧载体颗粒尺寸对其在CLC应用中长期性能的影响的更多实用信息。

著录项

  • 作者单位

    The University of Iowa.;

  • 授予单位 The University of Iowa.;
  • 学科 Chemical engineering.;Nanoscience.;Nanotechnology.
  • 学位 Ph.D.
  • 年度 2018
  • 页码 208 p.
  • 总页数 208
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号