首页> 外文期刊>Energy & fuels >α-Fe_2O_3 Nanoparticles as Oxygen Carriers for Chemical Looping Combustion: An Integrated Materials Characterization Approach to Understanding Oxygen Carrier Performance, Reduction Mechanism, and Particle Size Effects
【24h】

α-Fe_2O_3 Nanoparticles as Oxygen Carriers for Chemical Looping Combustion: An Integrated Materials Characterization Approach to Understanding Oxygen Carrier Performance, Reduction Mechanism, and Particle Size Effects

机译:α-Fe_2O_3纳米粒子作为用于化学环流燃烧的氧气载体:了解氧气载体性能,还原机理和粒径效应的综合材料表征方法

获取原文
获取原文并翻译 | 示例
       

摘要

Through continuous flow reactor experiments, materials characterization, and theoretical calculations, we provide new insights into the reduction of hematite (alpha-Fe2O3) nanoparticles by methane (CH4) during chemical looping combustion (CLC). Across CLC-relevant temperatures (500-800 degrees C) and gas flow rates (2.5-250 h(-1)), decreasing alpha-Fe2O3 particle size (from 350 to 3 nm) increased the duration over which CH4 was completely converted to CO2 (i.e., 100% yield). We attribute this size-dependent performance trend to the greater availability of lattice oxygen atoms in the near-surface region of smaller particles with higher surface area-to-volume ratios. All particle sizes then exhibited a relatively rapid rate of reactivity loss that was size- and temperature-independent, reflecting a greater role for magnetite (Fe3O4), the primary alpha-Fe2O3 reduction product, in CH4 oxidation. Bulk (X-ray diffraction, XRD) and surface (X-ray photoelectron spectroscopy, XPS) analysis revealed that oxygen carrier reduction proceeds via a two-stage solid-state mechanism; alpha-Fe2O3 reduction to Fe3O4 followed the unreacted shrinking core model (USCM) while subsequent reduction of Fe3O4 to wfistite (FeO) and FeO to iron metal (Fe) followed the nucleation and nuclei growth model (NNGM). Atomistic thermodynamics modeling based on density functional theory supports that reduction initiates via the USCM, as partially reduced alpha-Fe2O3 surfaces exhibited a wide range of stability relative to bulk Fe3O4. Reduction and reoxidation cycling experiments were also performed to explore more practical aspects related to the long-term performance of unsupported alpha-Fe2O3 nanoparticles as oxygen carriers for CLC.
机译:通过连续流动反应器实验,材料表征和理论计算,我们提供了在化学循环燃烧(CLC)过程中甲烷(CH4)还原赤铁矿(α-Fe2O3)纳米粒子的新见解。在整个CLC相关温度(500-800摄氏度)和气体流速(2.5-250 h(-1))中,减小α-Fe2O3粒径(从350纳米至3纳米)会增加CH4完全转化为二氧化碳(即100%的产率)。我们将这种与尺寸有关的性能趋势归因于具有较高表面积/体积比的较小粒子的近表面区域中晶格氧原子的可用性更高。然后,所有粒径均显示出相对快速的反应性损失速率,该速率与尺寸和温度无关,反映出主要的α-Fe2O3还原产物磁铁矿(Fe3O4)在CH4氧化中的作用更大。本体(X射线衍射,XRD)和表面(X射线光电子能谱,XPS)分析表明,氧载流子的还原是通过两阶段的固态机理进行的。将α-Fe2O3还原成Fe3O4遵循了未反应的收缩核模型(USCM),随后遵循了成核和核生长模型(NNGM)将Fe3O4还原为铁锰矿(FeO)和FeO还原为铁金属(Fe)。基于密度泛函理论的原子热力学模型支持还原通过USCM进行,因为部分还原的α-Fe2O3表面相对于本体Fe3O4表现出广泛的稳定性。还进行了还原和再氧化循环实验,以探索与无支撑α-Fe2O3纳米粒子作为CLC的氧载体的长期性能相关的更多实际方面。

著录项

  • 来源
    《Energy & fuels》 |2018年第7期|7959-7970|共12页
  • 作者单位

    Univ Iowa, Dept Chem & Biochem Engn, Iowa City, IA 52242 USA;

    Univ Iowa, Dept Chem, Iowa City, IA 52242 USA;

    Univ Iowa, Dept Chem & Biochem Engn, Iowa City, IA 52242 USA;

    Univ Iowa, Dept Chem & Biochem Engn, Iowa City, IA 52242 USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 00:39:12

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号