首页> 外文学位 >Singularities of configuration and graph hypersurfaces.
【24h】

Singularities of configuration and graph hypersurfaces.

机译:组态奇异性和图形超曲面。

获取原文
获取原文并翻译 | 示例

摘要

I show that the singularities of a configuration hypersurface correspond to the points whose corank is at least two. The result generalizes to compute multiplicities at higher corank loci in configuration hypersurfaces. Though the result is similar to the case of a generic determinantal variety, the proof proceeds from a different perspective. The key is simple linear algebra: the rank of a quadratic form is determined by its ranks when restricted to each hyperplane in a complete set of hyperplanes.;I review the construction of the first and second graph hypersurfaces as examples of configuration hypersurfaces. In particular, the singularities of the first and second graph hypersurfaces are corank at least two loci. As an application, the singularities of the first graph hypersurface are contained in the second graph hypersurface, and the singularities of the second graph hypersurface are contained in the first hypersurface.;I show that the map to which the graph hypersurface is dual is not an embedding in general. Therefore, the incidence variety may not resolve the singularities of the graph hypersurface.;I present a formula that describes the graph polynomial of a graph produced by a specific gluing-deleting operation on a pair of graphs. The operation produces log-divergent graphs from log-divergent graphs, so it is useful for generating examples relevant for physics. A motivic understanding of the operation is still missing.
机译:我表明,配置超曲面的奇异性对应于其秩至少为2的点。该结果可以概括为在配置超曲面中的较高corank位点上计算多重性。尽管结果与通用行列式变体的情况类似,但证明是从不同的角度进行的。关键是简单的线性代数:二次形式的秩由当限制在一个完整的超平面集合中的每个超平面时的等级决定。我将以构造超曲面为例回顾第一和第二图形超曲面的构造。特别地,第一图形超表面和第二图形超表面的奇异度至少为两个基因座。作为应用,第一图形超曲面的奇异性包含在第二图形超曲面中,第二图形超曲面的奇异性包含在第一超曲面中。嵌入一​​般。因此,入射角的变化可能无法解决图形超曲面的奇异性。我提出了一个公式,该公式描述了通过对一对图形进行特定的胶合删除操作而生成的图形的图形多项式。该操作从对数发散图生成对数发散图,因此对于生成与物理相关的示例很有用。仍然缺乏对该手术的积极理解。

著录项

  • 作者

    Patterson, Eric.;

  • 作者单位

    The University of Chicago.;

  • 授予单位 The University of Chicago.;
  • 学科 Mathematics.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 764 p.
  • 总页数 764
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 宗教;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号