首页> 外文学位 >Haptic Modeling of Trocar Insertion Procedure.
【24h】

Haptic Modeling of Trocar Insertion Procedure.

机译:套管针插入程序的触觉建模。

获取原文
获取原文并翻译 | 示例

摘要

Laparoscopic surgery has become one of the most commonly performed Minimally Invasive Surgery (MIS). Trocar insertion is the first step in any laparoscopic procedure. A majority of injuries during MIS is attributed to excessive use of force by surgeon during trocar insertion [7]. It is a difficult procedure to learn and practice because it is carried out almost entirely without any visual feedback of the organs underlying the tissues being damaged. Therefore, it a training system with haptic feedback will be very beneficial.;Challenges in developing such a feedback system are many. For example, characterizing accurate biomechanical properties of tissues from experimental data, integrating proper deformation mechanism of tissues into haptic feedback, and advanced visualization techniques are just a few of them.;In this research, to extract reliable relationship between force/torque and deformation of the abdomen walls in the thorax area, trocar insertion data (force/torque, time, displacement, etc.) was collected by inserting specially instrumented trocar into a few specimens of pig tissues. The instrumentation used included a force/torque sensor, aurora sensors, and a 6 DOF haptic device. Using this experimental data set and accurate simulation of the experimental trocar insertion process, an optimization scheme is proposed to stochastically characterize the biomechanical properties of tissues based on non-linear and large strain models. Commercially available high-level programming software, MATLAB, and finite element (FE) software, ABAQUS, are used for this purpose. The predicted material properties and deformation mechanisms have been cross-validated with a different set of experimental results. This provides sufficient confidence in reliably using the estimated material properties and deformation mechanism to further develop a virtual reality system for trocar insertion procedure with haptic feedback. A new graphic deformation system based on Artificial Neural Networks (ANN) is proposed. Our proposed ANN framework consists of two separate neural networks. The first ANN models the force (haptic) feedback of the trocar insertion procedure and synthesizes appropriate reaction force based on clinical data through a haptic device. The second ANN models the mechanism of tissue deformation. We train this second ANN model using the FE computed deformation data for real time rendering of appropriate tissue deformations. The virtual training system is finally simulated based on these two ANN models for tissue deformation and force feedback in real time. This novel method allows precise trocar insertion simulation based on prior offline FE analysis.
机译:腹腔镜手术已成为最常见的微创手术(MIS)之一。套管针插入是任何腹腔镜手术的第一步。 MIS期间的大部分伤亡归因于外科医生在套管针插入过程中过度使用了力量[7]。这是很难学习和实践的过程,因为它几乎完全在没有破坏组织下面器官的任何视觉反馈的情况下进行。因此,具有触觉反馈的训练系统将是非常有益的。开发这种反馈系统的挑战很多。例如,从实验数据中表征组织的准确生物力学特性,将组织的适当变形机制整合到触觉反馈中,以及先进的可视化技术只是其中的一部分;在本研究中,要提取力/转矩与组织变形之间的可靠关系。通过在一些猪组织标本中插入专用的套管针,收集胸腔区域的腹部壁,套管针的插入数据(力/扭矩,时间,位移等)。使用的仪器包括力/扭矩传感器,极光传感器和6 DOF触觉设备。利用该实验数据集和实验套管针插入过程的精确模拟,提出了一种优化方案,用于基于非线性和大应变模型随机表征组织的生物力学特性。为此,使用了商业上可用的高级编程软件MATLAB和有限元(FE)软件ABAQUS。预测的材料特性和变形机制已与一组不同的实验结果进行了交叉验证。这为可靠地使用估计的材料属性和变形机制提供了足够的信心,以进一步开发带有触觉反馈的套管针插入过程的虚拟现实系统。提出了一种基于人工神经网络的图形变形系统。我们提出的人工神经网络框架由两个独立的神经网络组成。第一个ANN对套管针插入过程的力(触觉)反馈进行建模,并根据临床数据通过触觉设备合成适当的反作用力。第二个人工神经网络模拟了组织变形的机制。我们使用FE计算的变形数据训练第二个ANN模型,以实时渲染适当的组织变形。最后,基于这两个ANN模型对虚拟训练系统进行了仿真,以实时进行组织变形和力反馈。这种新颖的方法可以基于先前的离线有限元分析进行精确的套管针插入仿真。

著录项

  • 作者

    Seo, Yong Won.;

  • 作者单位

    State University of New York at Buffalo.;

  • 授予单位 State University of New York at Buffalo.;
  • 学科 Biophysics Biomechanics.;Engineering Mechanical.;Computer Science.
  • 学位 Ph.D.
  • 年度 2015
  • 页码 159 p.
  • 总页数 159
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号