首页> 外文学位 >Designing energy-efficient sub-threshold logic circuits using equalization and non-volatile memory circuits using memristors.
【24h】

Designing energy-efficient sub-threshold logic circuits using equalization and non-volatile memory circuits using memristors.

机译:使用均衡器设计节能的亚阈值逻辑电路,使用忆阻器设计非易失性存储电路。

获取原文
获取原文并翻译 | 示例

摘要

The very large scale integration (VLSI) community has utilized aggressive complementary metal-oxide semiconductor (CMOS) technology scaling to meet the ever-increasing performance requirements of computing systems. However, as we enter the nanoscale regime, the prevalent process variation effects degrade the CMOS device reliability. Hence, it is increasingly essential to explore emerging technologies which are compatible with the conventional CMOS process for designing highly-dense memory/logic circuits. Memristor technology is being explored as a potential candidate in designing non-volatile memory arrays and logic circuits with high density, low latency and small energy consumption. In this thesis, we present the detailed functionality of multi-bit 1-Transistor 1-memRistor (1T1R) cell-based memory arrays. We present the performance and energy models for an individual 1T1R memory cell and the memory array as a whole. We have considered TiO2- and H fOchi-based memristors, and for these technologies there is a sub-10% difference between energy and performance computed using our models and HSPICE simulations. Using a performance-driven design approach, the energy-optimized TiO2-based RRAM array consumes the least write energy (4.06 pJ/bit) and read energy (188 fJ/bit) when storing 3 bits/cell for 100 nsec write and 1 nsec read access times. Similarly, H fOchi-based RRAM array consumes the least write energy (365 fJ/bit) and read energy (173 fJ/bit) when storing 3 bits/cell for 1 nsec write and 200 nsec read access times.;On the logic side, we investigate the use of equalization techniques to improve the energy efficiency of digital sequential logic circuits in sub-threshold regime. We first propose the use of a variable threshold feedback equalizer circuit with combinational logic blocks to mitigate the timing errors in digital logic designed in sub-threshold regime. This mitigation of timing errors can be leveraged to reduce the dominant leakage energy by scaling supply voltage or decreasing the propagation delay. At the fixed supply voltage, we can decrease the propagation delay of the critical path in a combinational logic block using equalizer circuits and, correspondingly decrease the leakage energy consumption. For a 8-bit carry lookahead adder designed in UMC 130 nm process, the operating frequency can be increased by 22.87% (on average), while reducing the leakage energy by 22.6% (on average) in the sub-threshold regime. Overall, the feedback equalization technique provides up to 35.4% lower energy-delay product compared to the conventional non-equalized logic. We also propose a tunable adaptive feedback equalizer circuit that can be used with sequential digital logic to mitigate the process variation effects and reduce the dominant leakage energy component in sub-threshold digital logic circuits. For a 64-bit adder designed in 130 nm our proposed approach can reduce the normalized delay variation of the critical path delay from 16.1% to 11.4% while reducing the energy-delay product by 25.83% at minimum energy supply voltage. In addition, we present detailed energy-performance models of the adaptive feedback equalizer circuit. This work serves as a foundation for the design of robust, energy-efficient digital logic circuits in sub-threshold regime.
机译:超大规模集成(VLSI)社区已利用积极的互补金属氧化物半导体(CMOS)技术扩展来满足计算系统不断增长的性能要求。然而,随着我们进入纳米尺度领域,普遍的工艺变化效应降低了CMOS器件的可靠性。因此,探索与常规CMOS工艺兼容的新兴技术来设计高密度存储器/逻辑电路变得越来越重要。在设计具有高密度,低延迟和低能耗的非易失性存储器阵列和逻辑电路时,忆阻器技术正在被探索为潜在的候选者。在本文中,我们介绍了基于多位1-晶体管1-memRistor(1T1R)单元的存储阵列的详细功能。我们介绍了单个1T1R存储单元和整个存储阵列的性能和能量模型。我们已经考虑了基于TiO2和H fOchi的忆阻器,对于这些技术,使用我们的模型和HSPICE模拟计算得出的能量和性能之间的差异不到10%。使用性能驱动的设计方法,能量优化的基于TiO2的RRAM阵列在每单元存储3位数据(每写入100 ns和1 ns)时,消耗最少的写入能量(4.06 pJ /位)和读取能量(188 fJ /位)。读取访问时间。类似地,基于H fOchi的RRAM阵列在每3单元存储1 ns写入和200 ns读取访问时间时,消耗的写入能量(365 fJ /位)和读取能量(173 fJ /位)最少。 ,我们研究了使用均衡技术提高亚阈值范围内数字顺序逻辑电路的能效的方法。我们首先提出将可变阈值反馈均衡器电路与组合逻辑块配合使用,以减轻在亚阈值范围内设计的数字逻辑中的时序误差。时序误差的这种缓解可以通过调整电源电压或减小传播延迟来减少主要的泄漏能量。在固定电源电压下,我们可以使用均衡器电路减少组合逻辑模块中关键路径的传播延迟,并相应地降低泄漏能量消耗。对于采用UMC 130 nm工艺设计的8位进位超前加法器,在亚阈值范围内,工作频率可以提高22.87%(平均),而泄漏能量却可以降低22.6%(平均)。总体而言,与传统的非均衡逻辑相比,反馈均衡技术可提供低35.4%的能量延迟积。我们还提出了一种可调节的自适应反馈均衡器电路,该电路可与顺序数字逻辑一起使用,以减轻过程变化影响并减少亚阈值数字逻辑电路中的主要泄漏能量分量。对于设计为130 nm的64位加法器,我们提出的方法可以将关键路径延迟的归一化延迟变化从16.1%降低到11.4%,同时在最小电源电压下将能量延迟乘积降低25.83%。此外,我们介绍了自适应反馈均衡器电路的详细能量性能模型。这项工作为亚阈值状态下的健壮,节能数字逻辑电路的设计奠定了基础。

著录项

  • 作者

    Zangeneh, Mahmoud.;

  • 作者单位

    Boston University.;

  • 授予单位 Boston University.;
  • 学科 Electrical engineering.
  • 学位 Ph.D.
  • 年度 2015
  • 页码 148 p.
  • 总页数 148
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:52:23

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号