首页> 外文学位 >Embedding Logic and Non-volatile Devices in CMOS Digital Circuits for Improving Energy Efficiency
【24h】

Embedding Logic and Non-volatile Devices in CMOS Digital Circuits for Improving Energy Efficiency

机译:将逻辑和非易失性器件嵌入CMOS数字电路以提高能效

获取原文
获取原文并翻译 | 示例

摘要

Static CMOS logic has remained the dominant design style of digital systems for more than four decades due to its robustness and near zero standby current. Static CMOS logic circuits consist of a network of combinational logic cells and clocked sequential elements, such as latches and flip-flops that are used for sequencing computations over time. The majority of the digital design techniques to reduce power, area, and leakage over the past four decades have focused almost entirely on optimizing the combinational logic. This work explores alternate architectures for the flip-flops for improving the overall circuit performance, power and area. It consists of three main sections.;First, is the design of a multi-input configurable flip-flop structure with embedded logic. A conventional D-type flip-flop may be viewed as realizing an identity function, in which the output is simply the value of the input sampled at the clock edge. In contrast, the proposed multi-input flip-flop, named PNAND, can be configured to realize one of a family of Boolean functions called threshold functions. In essence, the PNAND is a circuit implementation of the well-known binary perceptron. Unlike other reconfigurable circuits, a PNAND can be configured by simply changing the assignment of signals to its inputs. Using a standard cell library of such gates, a technology mapping algorithm can be applied to transform a given netlist into one with an optimal mixture of conventional logic gates and threshold gates. This approach was used to fabricate a 32-bit Wallace Tree multiplier and a 32-bit booth multiplier in 65nm LP technology. Simulation and chip measurements show more than 30% improvement in dynamic power and more than 20% reduction in core area.;The functional yield of the PNAND reduces with geometry and voltage scaling. The second part of this research investigates the use of two mechanisms to improve the robustness of the PNAND circuit architecture. One is the use of forward and reverse body biases to change the device threshold and the other is the use of RRAM devices for low voltage operation.;The third part of this research focused on the design of flip-flops with non-volatile storage. Spin-transfer torque magnetic tunnel junctions (STT-MTJ) are integrated with both conventional D-flipflop and the PNAND circuits to implement non-volatile logic (NVL). These non-volatile storage enhanced flip-flops are able to save the state of system locally when a power interruption occurs. However, manufacturing variations in the STT-MTJs and in the CMOS transistors significantly reduce the yield, leading to an overly pessimistic design and consequently, higher energy consumption. A detailed analysis of the design trade-offs in the driver circuitry for performing backup and restore, and a novel method to design the energy optimal driver for a given yield is presented. Efficient designs of two nonvolatile flip-flop (NVFF) circuits are presented, in which the backup time is determined on a per-chip basis, resulting in minimizing the energy wastage and satisfying the yield constraint. To achieve a yield of 98%, the conventional approach would have to expend nearly 5X more energy than the minimum required, whereas the proposed tunable approach expends only 26% more energy than the minimum. A non-volatile threshold gate architecture NV-TLFF are designed with the same backup and restore circuitry in 65nm technology. The embedded logic in NV-TLFF compensates performance overhead of NVL. This leads to the possibility of zero-overhead non-volatile datapath circuits. An 8-bit multiply-and-accumulate (MAC) unit is designed to demonstrate the performance benefits of the proposed architecture. Based on the results of HSPICE simulations, the MAC circuit with the proposed NV-TLFF cells is shown to consume at least 20% less power and area as compared to the circuit designed with conventional DFFs, without sacrificing any performance.
机译:静态CMOS逻辑由于其鲁棒性和接近零的待机电流而在数字系统中一直是主导的设计风格已有40多年了。静态CMOS逻辑电路由组合逻辑单元和时钟时序元素(例如锁存器和触发器)组成的网络组成,这些时序元素用于随时间进行排序计算。在过去的40年中,大多数用于减少功耗,面积和泄漏的数字设计技术几乎都集中在优化组合逻辑上。这项工作探索了触发器的替代架构,以改善整体电路性能,功率和面积。它包括三个主要部分:首先,是具有嵌入式逻辑的多输入可配置触发器结构的设计。可以将传统的D型触发器视为实现标识函数,其中输出只是在时钟沿采样的输入值。相反,提出的多输入触发器PNAND可以配置为实现称为阈值函数的布尔函数系列之一。本质上,PNAND是众所周知的二进制感知器的电路实现。与其他可重配置电路不同,PNAND可以通过简单地更改其输入的信号分配来进行配置。使用此类门的标准单元库,可以应用技术映射算法将给定的网表转换为具有传统逻辑门和阈值门的最佳组合的网表。该方法用于制造采用65nm LP技术的32位华莱士树乘法器和32位展位乘法器。仿真和芯片测量表明,动态功耗提高了30%以上,核心面积减少了20%以上。PNAND的功能产量随几何尺寸和电压缩放而降低。本研究的第二部分研究了两种机制的使用,以提高PNAND电路架构的鲁棒性。一种是使用正向和反向本体偏置来更改器件阈值,另一种是使用RRAM器件进行低压操作。本研究的第三部分重点在于具有非易失性存储的触发器的设计。自旋转移转矩磁隧道结(STT-MTJ)与常规D触发器和PNAND电路集成在一起,以实现非易失性逻辑(NVL)。这些非易失性存储增强型触发器能够在发生电源中断时在本地保存系统状态。但是,STT-MTJ和CMOS晶体管的制造差异极大地降低了成品率,从而导致设计过于悲观,从而导致更高的能耗。给出了用于执行备份和还原的驱动器电路中设计折衷的详细分析,以及一种针对给定产量设计能量最佳驱动器的新颖方法。提出了两个非易失性触发器(NVFF)电路的高效设计,其中,备份时间是在每个芯片的基础上确定的,从而可将能量浪费降至最低,并满足良率约束。为了达到98%的产率,常规方法的能量消耗必须比最低要求高出近5倍,而建议的可调方法仅比最低能量消耗高出26%。非易失性阈值门架构NV-TLFF采用65纳米技术采用相同的备份和还原电路进行设计。 NV-TLFF中的嵌入式逻辑可补偿NVL的性能开销。这导致零开销的非易失性数据路径电路的可能性。设计了一个8位乘法和累加(MAC)单元,以演示所提出体系结构的性能优势。根据HSPICE仿真的结果,与使用传统DFF设计的电路相比,具有拟议的NV-TLFF单元的MAC电路功耗和面积至少减少了20%。

著录项

  • 作者

    Yang, Jinghua.;

  • 作者单位

    Arizona State University.;

  • 授予单位 Arizona State University.;
  • 学科 Electrical engineering.;Computer engineering.
  • 学位 Ph.D.
  • 年度 2018
  • 页码 180 p.
  • 总页数 180
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号