首页> 外文期刊>IEEE Transactions on Electron Devices >Device-Circuit Cosimulation for Energy Efficiency in Sub-10-nm Gate Length Logic and Memory
【24h】

Device-Circuit Cosimulation for Energy Efficiency in Sub-10-nm Gate Length Logic and Memory

机译:器件电路协同仿真,实现低于10nm栅极长度逻辑和存储器的能效

获取原文
获取原文并翻译 | 示例
           

摘要

Sub-10-nm gate length devices are expected to have severe short channel effects along with new leakage mechanisms, such as direct source-to-drain tunneling (DSDT). In this paper, in order to improve the leakage and to obtain the highest performance/stability in such deeply scaled devices, we perform device–circuit cosimulation for sub-10-nm gate length to optimize devices for logic and memory. For that purpose, double-gate MOSFETs with sub-10-nm gate length are optimized using symmetric/asymmetric gate-to-source/drain underlaps to improve the ON-state current to the OFF-state current ratio and the intrinsic gate delay. Using resulting device characteristics, the effectiveness of supply gating to improve standby leakage in the circuits is studied. We show that supply gating is effective in reducing DSDT current, as well as thermionic leakage current. Also, various SRAM designs are explored to improve stability and leakage in sub-10-nm gate length bit-cells. The analysis shows that 6T SRAM bit-cells with asymmetrically underlapped devices can provide improvement in read stability over symmetric 6T bit-cells, as well as traditional 6T bit-cells. However, the need for higher stability in the sub-10-nm gate length regime due to parameter variation would require us to investigate other bit-cell configurations. Our analysis on 1R/1W differential 8T SRAM bit-cells show that significant increase in read/write stability as well as improvement in write time, and leakage can be achieved compared with the optimized 6T SRAM bit-cells.
机译:预计栅长小于10nm的器件将具有严重的短沟道效应,并伴随着新的泄漏机制,例如直接源极至漏极隧穿(DSDT)。在本文中,为了改善此类深度扩展器件的泄漏并获得最高的性能/稳定性,我们针对低于10nm的栅极长度执行了器件-电路协同仿真,以优化逻辑和存储器器件。为此,使用对称/非对称栅-源/漏下陷来优化栅长小于10nm的双栅MOSFET,以提高导通电流与截止状态的电流比和固有的栅极延迟。利用得到的器件特性,研究了电源门控改善电路中待机泄漏的有效性。我们显示电源门控可有效降低DSDT电流以及热电子泄漏电流。此外,人们还探索了各种SRAM设计,以改善10nm以下栅极长度位单元的稳定性和泄漏。分析显示,具有不对称欠重叠器件的6T SRAM位单元可以提高读取稳定性,优于对称6T位单元以及传统的6T位单元。但是,由于参数变化,需要在低于10 nm的栅极长度范围内提高稳定性,这需要我们研究其他位单元配置。我们对1R / 1W差分8T SRAM位单元的分析表明,与优化的6T SRAM位单元相比,读/写稳定性显着提高,写时间也得到了改善,并且可以实现泄漏。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号