首页> 外文学位 >Zebra finch vocal development through reinforcement of the anterior forebrain pathway.
【24h】

Zebra finch vocal development through reinforcement of the anterior forebrain pathway.

机译:斑马雀科通过加强前脑前路的声音发展。

获取原文
获取原文并翻译 | 示例

摘要

This dissertation explores reinforcement learning in the context of zebra finch song development. In the first chapter, we explore why we believe reinforcement learning is present in songbirds. We argue that similarities in vocal learning and neurophysiology between humans and songbirds offer compelling evidence that the two develop vocalization under similar constraints. A general constraint of motor learning tasks in animals is the requirement of the neurotransmitter dopamine. In mammals dopamine has been shown to encode reward information that is subsequently used to reinforce the motor activity.;The second chapter presents our reinforcement learning model in the context of song development during the sensorimotor phase of zebra finch. We use simplified binary neurons and synaptic plasticity rules to model activity in critical nuclei that are involved in zebra finch song learning. The model generates exploration in the anterior forebrain pathway (AFP) to guide the song trajectory to a stored tutor song. More specifically, random activity in the lateral magnocellular nucleus of the anterior nidopallium (LMAN) drives random exploration of HVC (proper name) projections to area X. When the model's juvenile song moves towards the memorized tutor template a reward is generated. The reward is represented by activity in the ventral tegmental area (VTA) which globally projects dopamine to area X. The reinforcement of area X activity is permanently mapped onto the premotor projection from HVC to the robust nucleus of the arcopallium (RA). The reward activity is delayed by 100 ms for biological reasons creating a temporal difference problem between activity and its corresponding reward. We resolve this issue using sustained area X activity and a plastic excitatory projection from area X to the VTA. The model is able to guide song development to the tutor song template by using biologically reasonable connectivity and synaptic learning rules.;Following the presentation of our birdsong model, a brief summary of a computational neuron model previously developed is presented in chapter 3. We look at the important aspects of neurons contained in the medial nucleus of the dorsolateral thalamus (DLM). The DLM neurons show unique activity transmission within the AFP and its role in song learning is unknown. The computational model is a single compartment, conductance based neuron with several ion channels. The properties of the ion channels were derived from a neuron model of mammalian thalamic relay neurons. The model reproduces the electrophysiological properties experimentally reported for the DLM neuron that are critical to the timing reported in the AFP.
机译:本文探讨了斑马雀科歌曲发展背景下的强化学习。在第一章中,我们探讨了为什么我们相信鸣禽中存在强化学习。我们认为,人类和鸣禽在声音学习和神经生理学上的相似性提供了令人信服的证据,表明两者在相似的约束下发展了声音。动物中运动学习任务的一般约束是神经递质多巴胺的需求。在哺乳动物中,多巴胺已显示出编码奖励信息的信息,该信息随后被用于增强运动活动。第二章介绍了在斑马雀科感觉运动阶段歌曲发展过程中的增强学习模型。我们使用简化的二进制神经元和突触可塑性规则来模拟斑马雀科歌曲学习中涉及的关键核中的活动。该模型在前脑前路(AFP)中产生探查,以将歌曲轨迹引导到已存储的导师歌曲。更具体而言,前鼻腔神经外侧核(LMAN)的随机活动推动了对区域X的HVC(专有名称)投影的随机探索。当模型的少年歌曲朝着记忆的家教模板移动时,就会产生奖励。奖励由腹侧被盖区(VTA)中的活动表示,该活动将多巴胺整体投射到X区。X区活动的增强永久性地映射到从HVC到弧菌核(RA)的运动前投射上。由于生物学原因,奖励活动被延迟100毫秒,从而在活动及其相应奖励之间产生了时间差异问题。我们使用X区域的持续活动和从X区域到VTA的塑性兴奋性投影来解决此问题。该模型能够通过使用生物学上合理的连接性和突触学习规则将歌曲的开发指导为导师的歌曲模板。;在介绍我们的Birdong模型之后,第3章简要介绍了先前开发的计算神经元模型。在背外侧丘脑(DLM)内侧核中神经元的重要方面。 DLM神经元显示AFP内独特的活动传递,其在歌曲学习中的作用尚不清楚。该计算模型是具有几个离子通道的单个隔室,基于电导的神经元。离子通道的特性源自哺乳动物丘脑中继神经元的神经元模型。该模型再现了DLM神经元实验报告的电生理特性,这对于AFP中报告的时间至关重要。

著录项

  • 作者

    Fraser, David Jeffrey.;

  • 作者单位

    The Pennsylvania State University.;

  • 授予单位 The Pennsylvania State University.;
  • 学科 Biology Neurobiology.;Biophysics General.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 211 p.
  • 总页数 211
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号