首页> 外文学位 >Numerical simulation with Gaussian low-pass filtered Navier-Stokes equations.
【24h】

Numerical simulation with Gaussian low-pass filtered Navier-Stokes equations.

机译:使用高斯低通滤波的Navier-Stokes方程的数值模拟。

获取原文
获取原文并翻译 | 示例

摘要

In this study, a low pass Gaussian type space-time filter is applied to the Navier-Stokes equations. Such an application will enhance the capabilities of simulating complex flows by eliminating the small scales of motion that cannot be resolved within the available computational grid. The derivation of filtered equations are presented both with and without separation of scales. The filtered Navier-Stokes equations contain terms which accurately represent the complex interaction between the resolved and subgrid scale components of the whole flow field. In addition, the significance of the filtering process from the numerical point of view is studied.;Using a two-dimensional general purpose Navier-Stokes equations solver which employs a consistent penalty formulation Galerkin finite element method, the filtered equations are applied to a recirculating, lid driven cavity test problem. A systematic investigation is performed to analyze the fundamental behavior and effectiveness of the filtered equations at moderate Reynolds numbers. Specifically, the Leonard/Clark approximation to the resolved-subgrid scale interaction terms and the subgrid scale closure models are thoroughly examined through numerical experiments.;The results of the study indicated that preparing the Navier-Stokes equations for the numerical simulations through space-time filtering enhances their solutions by providing more accurate momentum/energy transfer among the different scales of the flow. The increased stability properties together with the elimination of the extreme small scales from the flow field reduce the requirement for extensive grid refinement which consequently will increase the possibility to simulate more complex flows at higher Reynolds numbers with the available computer resources.
机译:在这项研究中,将低通高斯型时空滤波器应用于Navier-Stokes方程。这样的应用程序将消除可用计算网格中无法解决的小规模运动,从而增强了模拟复杂流的能力。提出了带和不带刻度分离的滤波方程式的推导。过滤后的Navier-Stokes方程包含准确表示整个流场的已解析和次网格比例分量之间的复杂相互作用的项。此外,还从数值的角度研究了滤波过程的重要性。;采用二维通用Navier-Stokes方程组求解器,采用一致的惩罚公式Galerkin有限元法,将滤波后的方程应用于循环,盖驱动型腔测试有问题。进行了系统的研究,以分析中等雷诺数下的滤波方程的基本行为和有效性。具体来说,通过数值实验对解析网格下相互作用的项的伦纳德/克拉克近似和网格封闭模型进行了深入研究。研究结果表明,为时空数值模拟准备了Navier-Stokes方程。过滤通过在不同比例的流量之间提供更准确的动量/能量传递来增强其解决方案。增加的稳定性能以及消除流场中的极小尺度降低了对网格进行广泛细化的需求,因此将增加使用可用计算机资源以更高的雷诺数模拟更复杂的流的可能性。

著录项

  • 作者

    Cantekin, Mustafa Elvan.;

  • 作者单位

    Texas A&M University.;

  • 授予单位 Texas A&M University.;
  • 学科 Mechanical engineering.;Ocean engineering.;Physical oceanography.
  • 学位 Ph.D.
  • 年度 1991
  • 页码 248 p.
  • 总页数 248
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号