首页> 外文学位 >Study of gate oxide breakdown and hot electron effect on CMOS circuit performances.
【24h】

Study of gate oxide breakdown and hot electron effect on CMOS circuit performances.

机译:研究栅极氧化层击穿和热电子对CMOS电路性能的影响。

获取原文
获取原文并翻译 | 示例

摘要

In the modern semiconductor world, there is a significant scaling of the transistor dimensions---the transistor gate length and the gate oxide thickness drop down to only several nanometers. Today the semiconductor industry is already dominated by submicron devices and other material devices for the high transistor density and performance enhancement. In this case, the semiconductor reliability issues are the most important thing for commercialization. The major reliability issues caused by voltage are hot carrier effects (HCs) and gate oxide breakdown (BD) effects. These issues are recently more important to industry, due to the small size and high lateral field in short-channel of the device will cause high electrical field and other reliability issues.;This dissertation primarily focuses on the study of the CMOS device gate oxide breakdown effect on different kinds of circuits performance, also some HC effects on circuit's performance are studied. The physical mechanisms for BD have been presented. A practical and accurate equivalent breakdown circuit model for the CMOS device was studied to simulate the RF performance degradation on the circuit level. The BD location effect has been evaluated. Furthermore, a methodology was developed to predict the BD effects on the circuit's performances with different kinds of BD location. It also provides guidance for the reliability considerations of the digital, analog, and RF circuit design. The BD effects on digital circuits SRAM, analog circuits Sample&Hold, and RF building blocks with the nanoscale device---low noise amplifier, LC oscillator, mixer, and power amplifier, have been investigated systematically. Finally 90 nm device will be used to study the HC effect on the circuit's performance.;The contributions of this dissertation include: Providing a thorough study of the gate oxide breakdown issues caused by the voltage stress on the device---from device level to circuit level; Studying real voltage stress case---high frequency (950 MHz) dynamic stress, and comparing with the traditional DC stress; A simple, practical, and analytical method is derived to study the gate oxide breakdown effect including breakdown location effect and soft/hard breakdown on the digital, analog and RF circuits performances. A brief introduction and simulation for 90 nm device HC effect provide some useful information and helpful data for the industry.;The gate oxide breakdown effect is the most common device reliability issue. The successful results of this dissertation, from device level to circuit level, provide an insight on how the BD affects the circuit's performance, and also provide some useful data for the circuit designers in their future work.
机译:在现代半导体世界中,晶体管的尺寸已显着缩小-晶体管的栅极长度和栅极氧化层厚度下降到只有几纳米。如今,半导体行业已经以亚微米器件和其他材料器件为主导,以实现高晶体管密度和性能增强。在这种情况下,半导体可靠性问题对于商业化而言是最重要的。由电压引起的主要可靠性问题是热载流子效应(HCs)和栅氧化层击穿(BD)效应。由于器件的小尺寸和高横向电场会引起高电场和其他可靠性问题,因此这些问题最近在工业上更为重要。;本文主要研究CMOS器件栅氧化层的击穿对不同类型电路性能的影响,还研究了HC对电路性能的影响。已经提出了BD的物理机制。研究了用于CMOS器件的实用且精确的等效击穿电路模型,以模拟电路级RF性能的下降。 BD定位效果已得到评估。此外,开发了一种方法来预测不同类型BD位置下BD对电路性能的影响。它还为数字,模拟和RF电路设计的可靠性考虑提供了指导。 BD对数字电路SRAM,模拟电路Sample&Hold和具有纳米级器件的RF构件-低噪声放大器,LC振荡器,混频器和功率放大器的影响进行了系统地研究。最后将使用90 nm器件来研究HC对电路性能的影响。论文的贡献包括:全面研究由器件上的电压应力引起的栅极氧化层击穿问题-从器件级到器件级。电路级;研究实际电压应力情况-高频(950 MHz)动态应力,并与传统的直流应力进行比较;推导了一种简单,实用和分析的方法来研究栅极氧化物的击穿效应,包括击穿位置效应和软/硬击穿对数字,模拟和RF电路性能的影响。对90 nm器件HC效应的简要介绍和仿真为行业提供了一些有用的信息和有用的数据。栅氧化层击穿效应是最常见的器件可靠性问题。本论文的成功成果,从器件层面到电路层面,都为人们提供了关于BD如何影响电路性能的见解,并为电路设计者的未来工作提供了一些有用的数据。

著录项

  • 作者

    Ma, Jun.;

  • 作者单位

    University of Central Florida.;

  • 授予单位 University of Central Florida.;
  • 学科 Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 118 p.
  • 总页数 118
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号