首页> 外文学位 >Integrating rules and connectionism for robust reasoning: A connectionist architecture with dual representation.
【24h】

Integrating rules and connectionism for robust reasoning: A connectionist architecture with dual representation.

机译:集成规则和连接主义以实现可靠的推理:具有双重表示的连接主义体系结构。

获取原文
获取原文并翻译 | 示例

摘要

One of the more difficult problems for artificial intelligence is the problem of modeling commonsense reasoning and alleviating the brittleness of traditional symbolic rule-based models. This work attempts to tackle this problem by combining rules with connectionism in an integrated framework. This idea leads to the development of a connectionist architecture with dual representation that combines symbolic and subsymbolic (feature-based) processing for evidential robust reasoning: CONSYDERR.;An important aspect of this research is that the architecture utilizes the synergy resulting from the interaction of the two different types of representation and processing, and is thus capable of handling a large number of difficult issues in one integrated framework, such as partial and inexact information, cumulative evidential combination, lack of exact match, similarity matching, inheritance, and representational interactions, all of which are important elements of commonsense reasoning. The results suggest that connectionism coupled with rule-based symbolic processing capabilities can be effective and efficient models of reasoning for both theoretical and practical purposes.;Collins' protocols are analyzed based on the notions of rules and similarity, and are modeled by the architecture which carries out rule application and similarity matching through the interaction of the two levels. In order to understand rule encoding in the architecture, a formal analysis of the model is performed, which shows that it handles a superset of (propositional) Horn clause logic and Shoham's logic. To further improve the rule-based reasoning capability of the architecture, a solution to the connectionist variable binding problem is proposed. This work also explores the notion of causality and shows that commonsense causal knowledge can be well represented by CONSYDERR. Several other aspects of the architecture are discussed to demonstrate how connectionist models can supplement, enhance, and integrate symbolic rule-based reasoning.
机译:人工智能最困难的问题之一是对常识推理进行建模并减轻传统基于符号规则的模型的脆弱性的问题。这项工作试图通过在集成框架中将规则与连接主义相结合来解决此问题。这个想法导致了具有双重表示形式的连接主义体系结构的发展,该体系结构结合了符号和亚符号(基于特征的)处理,以进行可靠的证据推理:CONSYDERR 。;本研究的重要方面是,该体系结构利用了交互作用所产生的协同作用。两种不同类型的表示和处理,因此能够在一个集成框架中处理大量困难的问题,例如部分和不准确的信息,累积的证据组合,缺少精确匹配,相似性匹配,继承和表示性交互,所有这些都是常识推理的重要元素。结果表明,连接主义与基于规则的符号处理能力相结合可以为理论和实践目的提供有效且高效的推理模型。; Collins的协议基于规则和相似性的概念进行了分析,并通过该体系结构进行了建模通过两个级别的交互来执行规则应用和相似性匹配。为了理解体系结构中的规则编码,对模型进行了形式分析,表明模型处理了(命题)Horn子句逻辑和Shoham逻辑的超集。为了进一步提高架构的基于规则的推理能力,提出了一种解决连接主义变量绑定问题的方法。这项工作还探索了因果关系的概念,并表明常识因果知识可以由CONSYDERR很好地表示。讨论了体系结构的其他几个方面,以演示连接主义模型如何补充,增强和集成基于符号规则的推理。

著录项

  • 作者

    Sun, Ron.;

  • 作者单位

    Brandeis University.;

  • 授予单位 Brandeis University.;
  • 学科 Computer science.
  • 学位 Ph.D.
  • 年度 1992
  • 页码 283 p.
  • 总页数 283
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号