首页> 外文学位 >Point contact Andreev reflection spectroscopy for measuring spin polarization.
【24h】

Point contact Andreev reflection spectroscopy for measuring spin polarization.

机译:点接触式安德列夫反射光谱仪用于测量自旋极化。

获取原文
获取原文并翻译 | 示例

摘要

The Co-Pt systems have been extensively studied because of their potential applications in spintronic devices. We have experimentally measured transport spin polarization (PC) using Point Contact Andreev Reflection (PCAR) spectroscopy and magnetic properties of Co1-xPt x alloys. All films with x varying from 0 to 100% and a thickness of ∼1000 A were grown on Si substrates covered with ∼250 A of SiO 2 by magnetron sputtering (Ref. [1]). We have also performed band-structure calculations of the spin polarization in the same Co-Pt system. We have demonstrated that the experimental and theoretical results are in reasonably good agreement. We have compared the PCAR results with the tunneling spin polarization (TSP) values recently reported by Kaiser et al. (Ref. [1]) and showed that the overall trend of PCAR spin polarization is almost the same as for TSP with Al 2O3 barrier, but it is very different from the TSP with ALN barrier. We have performed X-ray Diffraction (XRD) experiments on these alloys and found that they, in general, exhibited face centered cubic crystallographic structure. Furthermore, our results renounce the idea of a direct relationship between the spin polarization and the magnetic moment for these alloys. We were surprised to find that pure Pt films showed obvious magnetic signatures both from PCAR spectroscopy and magnetization measurements, while TSP was found to be zero for pure Pt electrodes (Ref. [1]).;The Co-based Heusler alloys are also of special interest for possible spintronic applications due to their high Curie temperatures and high magnetic moment per unit cell. Co2FeSi is especially promising as a candidate half-metal as it has a Curie temperature of approximately 1100 K and the integer magnetic moment of 6 muB per unit cell (Ref. [2]). The samples have been prepared by arc melting of stoichiometric quantities of pure metals in argon atmosphere followed by annealing in sealed quartz tubes at 1300 K. We have experimentally measured PC in Co2FeSi and Co2Mn0.5Fe0.5Si using PCAR spectroscopy. We found that spin polarization for these two alloys was significantly lower than that predicted by theoretical studies. We have attributed this reduction in spin polarization to the defects and disorder in the crystallographic structure within the Heusler alloys. Moreover, we have also experimentally demonstrated that doping with Mn in Co2FeSi did not improve spin polarization for this alloy.;Spin diffusion length (Lsf) is of fundamental importance for spin dependent transport and spintronic devices. So far, most of the measurements of Lsf in nonmagnetic metals have been done in the lateral non-local geometry, with the chemical potential difference characterizing the spin imbalance. We have experimentally demonstrated spin transport studies in Heusler/Au bilayers using PCAR spectroscopy. Variable thickness Au films were deposited on top of the Heusler alloys and the PCAR spectroscopy was then used to probe PC on the Au side. In our approach Lsf was measured directly with PCAR spectroscopy. A spin polarized current was injected from a ferromagnetic electrode, Co2Mn0.5Fe0.5Si Heusler alloy, into Au films of variable thickness. The spin current, which gradually decays with the increased thickness of the film, was measured with a superconducting Nb tip. We developed a phenomenological theory which allowed us to determine Lsf in such a system. We found L sf in Au to be on the order of 312+/-36 nm at 4 K, comparable to the results obtained by other techniques using conventional ferromagnetic spin injectors. Similar results were obtained with a Gd single crystal.;One of the potential advantages of this new technique, however, is the ability to do the point contact measurements on the side of the normal electrode, which should allow one to do the complete measurement of spin diffusion length by consequentially measuring the spin polarization in a normal metal as a function of thickness in a single sample. This experimental demonstration may be considered as the first step in this direction. (Abstract shortened by UMI.);[1] Kaiser et al., Phys. Rev. Lett. 94, 247203 (2005). [2] Wurmehl et al., J. Appl. Phys. 99, 08J103 (2006).
机译:由于Co-Pt系统在自旋电子设备中的潜在应用,因此已进行了广泛的研究。我们已经使用点接触安德列夫反射(PCAR)光谱和Co1-xPt x合金的磁性能实验测量了传输自旋极化(PC)。通过磁控管溅射,在覆盖有约250 A SiO 2的Si衬底上生长所有x值从0到100%且厚度约为1000 A的膜(参考文献[1])。我们还对同一Co-Pt系统中的自旋极化进行了能带结构计算。我们已经证明,实验结果和理论结果吻合得很好。我们将PCAR结果与Kaiser等人最近报道的隧穿自旋极化(TSP)值进行了比较。 (参考文献[1])表明,PCAR自旋极化的总体趋势与带有Al 2O3势垒的TSP几乎相同,但与带有ALN势垒的TSP却有很大不同。我们对这些合金进行了X射线衍射(XRD)实验,发现它们通常显示出面心立方晶体结构。此外,我们的结果放弃了这些合金的自旋极化与磁矩之间直接关系的想法。我们惊讶地发现,纯Pt膜在PCAR光谱学和磁化强度测量中均显示出明显的磁特征,而纯Pt电极的TSP被发现为零(参考文献[1])。由于其较高的居里温度和较高的每单位电池磁矩,因此对可能的自旋电子学应用特别感兴趣。 Co2FeSi具有约1100 K的居里温度和每单位晶胞6μB的整数磁矩,因此有望作为一种候选的半金属(参考文献[2])。通过在氩气气氛中化学计量的纯金属电弧熔化,然后在1300 K的密封石英管中退火,制备了样品。我们已使用PCAR光谱法通过实验测量了Co2FeSi和Co2Mn0.5Fe0.5Si中的PC。我们发现这两种合金的自旋极化明显低于理论研究的预测。我们将这种自旋极化的减少归因于Heusler合金内晶体结构的缺陷和无序。此外,我们还通过实验证明,在Co2FeSi中掺杂Mn不会改善该合金的自旋极化。自旋扩散长度(Lsf)对于自旋相关的运输和自旋电子器件至关重要。到目前为止,大多数非磁性金属中Lsf的测量都是在横向非局部几何形状中进行的,化学势差是自旋失衡的特征。我们已通过实验证明了使用PCAR光谱在Heusler / Au双层中的自旋输运研究。将可变厚度的Au膜沉积在Heusler合金的顶部,然后使用PCAR光谱在Au侧探测PC。在我们的方法中,Lsf是通过PCAR光谱法直接测量的。从铁磁电极Co2Mn0.5Fe0.5Si Heusler合金中注入自旋极化电流到可变厚度的Au膜中。用超导Nb尖端测量了随着薄膜厚度的增加而逐渐衰减的自旋电流。我们开发了一种现象学理论,使我们能够确定这种系统中的Lsf。我们发现Au在4 K下的L sf约为312 +/- 36 nm,与使用传统铁磁自旋注射器的其他技术获得的结果相当。用Gd单晶获得了相似的结果。然而,这项新技术的潜在优势之一是能够在普通电极的一侧进行点接触测量,这应该使人们能够对Gd单晶进行完整的测量。通过相应地测量普通金属中的自旋极化随单个样品中的厚度而变化的自旋扩散长度。该实验演示可以被认为是朝这个方向迈出的第一步。 (摘要由UMI缩短。); [1] Kaiser等人,Phys。牧师94,247203(2005)。 [2] Wurmehl等人,J。Appl。Chem。物理99,08J103(2006)。

著录项

  • 作者

    Faiz, Muhammad Muzummal.;

  • 作者单位

    Wayne State University.;

  • 授予单位 Wayne State University.;
  • 学科 Physics Condensed Matter.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 203 p.
  • 总页数 203
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号