首页> 外文学位 >Magneto-optical spectroscopy in diluted magnetic semiconductor-based quantum well structures.
【24h】

Magneto-optical spectroscopy in diluted magnetic semiconductor-based quantum well structures.

机译:稀磁半导体量子阱结构中的磁光光谱学。

获取原文
获取原文并翻译 | 示例

摘要

Magneto-Optical spectroscopic techniques have been used to study diluted magnetic semiconductor (DMS) based quantum well structures. Two types of systems have been investigated.; a. Spin superlattices with alternating non-magnetic and magnetic layers, in which a tunable spin-dependent potential exists. The ZnSe/Zn{dollar}sb{lcub}0.99{rcub}{dollar}Fe{dollar}sb{lcub}0.01{rcub}{dollar}Se system, in which field induced spin splittings in both valence and conduction bands are much larger than the residual zero-field potentials, exhibits spin superlattice behavior. Low temperature magneto-reflectance experiments have been used to investigate the nature of these structures, verifying through field-dependent spin splittings and transition strengths, that they are in fact true spin superlattices, i.e. both the electrons and holes segregate according to their spin states.; The spin relaxation process in spin superlattice structures, both at zero field (no confining potential) and as a function of applied field (variable confining potential) have been studied. Evidence of an unexpectedly long hole spin relaxation time associated with the strain splitting of the valence band has been found. In addition, excitonic spin relaxation times which are unaffected by the strength of the spin-dependent confining potential were observed. It has been demonstrated that for excitons, spin flip via the magnetic ion-carrier exchange interaction is not the dominant spin relaxation mechanism, although it may play a more important role in the case of energetic hot carriers.; b. ZnTe/CdMnSe multiple quantum well structures have a type-II band alignment such that holes are subjected to strong confinement in the ZnTe layers ({dollar}simeq{dollar}0.7 eV) while electrons also experience strong confinement ({dollar}simeq{dollar}1.3 eV) in the CdMnSe layers. Two types of interband transitions have been observed in this system: (i) Type-II transitions between electrons confined in the CdMnSe layers and holes confined in the ZnTe layers. (ii) Type-I transitions associated with excitons formed between confined electrons and above the barrier hole states, both of which are localized in the CdMnSe layers. The position of the electrons and holes participating in both types of transitions has been verified by Zeeman Spectroscopy.
机译:磁光光谱技术已用于研究基于稀释磁半导体(DMS)的量子阱结构。已经研究了两种类型的系统。一个。具有交替的非磁性和磁性层的自旋超晶格,其中存在可调的自旋相关势。 ZnSe / Zn {dollar} sb {lcub} 0.99 {rcub} {dollar} Fe {dollar} sb {lcub} 0.01 {rcub} {dollar} Se系统,其中价位和导带中的场致自旋分裂都很大大于残余零场电势,表现出自旋超晶格行为。低温磁反射实验已用于研究这些结构的性质,并通过依赖于场的自旋分裂和跃迁强度来验证它们实际上是真正的自旋超晶格,即电子和空穴均根据其自旋态而分离。 ;研究了自旋超晶格结构中的自旋弛豫过程,既在零场(无约束势)下,也随施加场(可变约束势)变化。已经发现与价带的应变分裂有关的空穴自旋弛豫时间过长的证据。此外,观察到了不受自旋依赖性限制电位强度影响的激子自旋弛豫时间。已经证明,对于激子,通过磁性离子-载体交换相互作用的自旋翻转不是主要的自旋弛豫机制,尽管它在高能热载体的情况下可能起更重要的作用。 b。 ZnTe / CdMnSe多量子阱结构具有II型能带排列,因此,空穴在ZnTe层中受到严格的限制({emol} simeq {dollar} 0.7 eV),而电子也经历了严格的限制({dollar} simeq {dollar } 1.3 eV)。在该系统中已观察到两种类型的带间跃迁:(i)限制在CdMnSe层中的电子与限制在ZnTe层中的空穴之间的II型跃迁。 (ii)与在受限电子之间且在势垒空穴状态之上形成的激子相关的I型跃迁,两者均位于CdMnSe层中。电子和空穴参与两种类型跃迁的位置已经通过塞曼光谱法进行了验证。

著录项

  • 作者

    Chou, Wu-Ching.;

  • 作者单位

    State University of New York at Buffalo.;

  • 授予单位 State University of New York at Buffalo.;
  • 学科 Physics Condensed Matter.
  • 学位 Ph.D.
  • 年度 1992
  • 页码 111 p.
  • 总页数 111
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 O49;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号