首页> 外文学位 >Linearly separable stack-like architecture for the design of weighted order statistic filters with application in image processing.
【24h】

Linearly separable stack-like architecture for the design of weighted order statistic filters with application in image processing.

机译:用于设计加权阶数统计滤波器的线性可分离堆栈式体系结构,并应用于图像处理。

获取原文
获取原文并翻译 | 示例

摘要

In this thesis, the problem of designing a weighted order statistic (WOS) filter which is approximately optimal in the mean absolute error (MAE) sense, for estimating a signal from the noise-corrupted observation of the same, is considered. A stack filter configuration described by a linearly separable positive Boolean function (LSPBF) and referred to as linearly separable stack (LSS) filter, has been traditionally used for this design. The design of WOS filters in the domain of LSS filter architecture is a constrained design, in the sense that the weights defining the LSPBF can assume only positive or zero values.This thesis introduces a new approach for the design of WOS filters which are approximately optimal for estimation in the MAE sense, by defining a more general type of filter configuration than that of LSS filters. This new type of architecture is characterized by a linearly separable Boolean function (LSBF), and is designated as linearly separable stack-like (LSSL) filter. In the case of LSSL filters, the weights may assume any value, positive or negative. It is shown that LSSL filters satisfy a new property referred to as generalized stacking property. It is established that due to this property, the fundamentals of the optimality theory that has been developed for the class of stack filters, remain valid in the framework of LSSL filters as well. It is demonstrated that in the multilevel signal domain, an LSSL filter architecture performs the operation of WOS filtering.An adaptive algorithm for the design of WOS filters in the domain of LSSL filter architecture is derived. Since the filter weights in this architecture can assume any real values, the algorithm is less constrained than that in the case of LSS filter architecture. Consequently, the proposed design is expected to give better results in the sense of mean absolute error in signal estimation problems. An implementation of the proposed design algorithm is constructed by using a binary-level LMS algorithm.The proposed design and implementation is applied to the problem of restoring images corrupted with impulsive noise. Simulation results show that the WOS filters designed with the new method provide better results compared with those obtained by using the LSS filter architecture.
机译:在本文中,考虑了设计一种在平均绝对误差(MAE)意义上近似最佳的加权阶数统计(WOS)滤波器的问题,以便根据该噪声的观测值估计信号。传统上,由线性可分离正布尔函数(LSPBF)描述的堆栈过滤器配置被称为线性可分离堆栈(LSS)过滤器。从定义LSPBF的权重只能取正值或零的意义上来说,LSS滤波器体系结构中的WOS滤波器的设计是一种受约束的设计。本文为近似最优的WOS滤波器设计引入了一种新方法。通过定义比LSS滤波器更通用的滤波器配置类型,可以从MAE意义上进行估计。这种新型架构的特点是线性可分离的布尔函数(LSBF),并被称为线性可分离的类堆栈(LSSL)过滤器。对于LSSL过滤器,权重可以取正或负的任何值。可以看出,LSSL筛选器满足了一个称为通用堆栈属性的新属性。可以确定的是,由于这种特性,针对堆栈过滤器类别开发的最优性理论的基础在LSSL过滤器框架中也仍然有效。结果表明,在多级信号域中,LSSL过滤器体系结构执行WOS过滤操作。得出在LSSL过滤器体系结构域中设计WOS滤波器的自适应算法。由于此体系结构中的滤波器权重可以采用任何实际值,因此与LSS滤波器体系结构相比,该算法的约束较少。因此,在信号估计问题中的平均绝对误差的意义上,提出的设计有望提供更好的结果。提出的设计算法的实现是通过使用二进制级的LMS算法来构造的。该设计和实现被应用于恢复被脉冲噪声破坏的图像的问题。仿真结果表明,与使用LSS滤波器架构获得的WOS滤波器相比,使用新方法设计的WOS滤波器提供了更好的结果。

著录项

  • 作者

    Savin, Cristian Emanuel.;

  • 作者单位

    Concordia University (Canada).;

  • 授予单位 Concordia University (Canada).;
  • 学科 Engineering Electronics and Electrical.
  • 学位 M.A.Sc.
  • 年度 1993
  • 页码 100 p.
  • 总页数 100
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号