首页> 外文学位 >Nonlinear control of two-time-scale and distributed-parameter systems.
【24h】

Nonlinear control of two-time-scale and distributed-parameter systems.

机译:二时标和分布参数系统的非线性控制。

获取原文
获取原文并翻译 | 示例

摘要

All chemical engineering processes are inherently nonlinear. In addition to nonlinear nature, many chemical engineering processes are characterized by multiple-time-scale behavior and spatial variations. The mathematical models of chemical engineering processes are typically obtained from the dynamic conservation equations and consist of systems of nonlinear Ordinary Differential Equations (ODEs) and nonlinear Partial Differential Equations (PDEs). However, no mathematical model can precisely predict the dynamic behavior of a real process; there is always uncertainty. Model uncertainty is typically due to disturbances and unknown process parameters.; In the last decade, significant progress has been made towards the development of nonlinear control methods for systems of nonlinear ODEs. Differential geometry has proven to be a natural framework for the analysis and control of such systems. Within this framework, basic control problems, including the modification of the input/output behavior, the elimination of measurable disturbances, and the attenuation of unmeasured disturbances and unknown parameters have been successfully addressed. Although geometric control methods may lead to satisfactory control quality in nonlinear processes without time-scale multiplicity, they usually lead to poor performance in processes where multiple-time-scale behavior is present. Furthermore, few results are available for the synthesis of nonlinear controllers for nonlinear PDE systems. The need to develop control methods for nonlinear two-time-scale ODE systems and nonlinear PDE systems has been well-recognized both by industry and academia.; Motivated by the above, this doctoral thesis presents a general framework for the synthesis of nonlinear controllers for nonlinear two-time-scale ODE systems and nonlinear PDE systems that systematically addresses the problems of modification of the input/output behavior, elimination of measurable disturbances, and attenuation of unmeasured disturbances and unknown parameters. The proposed control algorithms are applied to industrially important chemical processes.
机译:所有化学工程过程本质上都是非线性的。除了非线性性质外,许多化学工程过程还具有多个时间尺度行为和空间变化的特征。化学工程过程的数学模型通常是从​​动态守恒方程获得的,由非线性常微分方程(ODE)和非线性偏微分方程(PDE)系统组成。但是,没有数学模型能够精确预测实际过程的动态行为。总会有不确定性。模型不确定性通常是由于干扰和未知的工艺参数造成的。在过去的十年中,在开发非线性ODE系统的非线性控制方法方面取得了重大进展。差分几何已被证明是分析和控制此类系统的自然框架。在此框架内,已经成功解决了基本控制问题,包括输入/​​输出行为的修改,可测量干扰的消除以及未测干扰和未知参数的衰减。尽管几何控制方法可以在没有时标多重性的非线性过程中带来令人满意的控制质量,但是它们通常会导致存在多时标行为的过程中的不良性能。此外,很少有结果可用于非线性PDE系统的非线性控制器的综合。工业界和学术界都已充分认识到需要为非线性二次尺度ODE系统和非线性PDE系统开发控制方法。鉴于以上原因,本博士论文提出了一个用于合成非线性二阶ODE系统和非线性PDE系统的非线性控制器的通用框架,该框架系统地解决了输入/输出行为的修改,可测量干扰的消除,以及无法测量的干扰和未知参数的衰减。所提出的控制算法被应用于工业上重要的化学过程。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号