首页> 外文学位 >Distributed Model Predictive Control of Nonlinear and Two-Time-Scale Process Networks.
【24h】

Distributed Model Predictive Control of Nonlinear and Two-Time-Scale Process Networks.

机译:非线性和二次规模过程网络的分布式模型预测控制。

获取原文
获取原文并翻译 | 示例

摘要

Large-scale chemical process systems are characterized by highly nonlinear behavior and the coupling of physico-chemical phenomena occurring at disparate time scales. Examples include fluidized catalytic crackers, distillation columns, biochemical reactors as well as chemical process networks in which the individual processes evolve in a fast time-scale and the network dynamics evolve in a slow time-scale. Traditionally, the design of advanced model-based control systems for chemical processes has followed the centralized paradigm in which one control system is used to compute the control actions of all manipulated inputs. While the centralized paradigm to model-based process control has been successful, when the number of the process state variables, manipulated inputs and measurements in a chemical plant becomes large - a common occurrence in modern plants - the computational time needed for the solution of the centralized control problem may increase significantly and may impede the ability of centralized control systems (particularly when nonlinear constrained optimization-based control systems like model predictive control-MPC are used), to carry out real-time calculations within the limits set by process dynamics and operating conditions. One feasible alternative to overcome this problem is to utilize cooperative, distributed control architectures in which the manipulated inputs are computed by solving more than one control (optimization) problems in separate processors in a coordinated fashion.;Motivated by the above considerations, this dissertation presents rigorous, yet practical, methods for the design of distributed model predictive control systems for nonlinear and two-time-scale process networks. Beginning with a review of results on the subject, the first part of this dissertation presents the design of two, sequential and iterative, distributed MPC architectures via Lyapunov-based control techniques for general nonlinear process systems. Key practical issues like the feedback of asynchronous and delayed measurements as well as the utilization of cost functions that explicitly account for economic considerations are explicitly addressed in the formulation and design of the controllers and of their communication strategy. In the second part of the dissertation, we focus on the design of model predictive control systems for nonlinear two-times-scale process networks within the framework of singular perturbations. Both centralized and distributed MPC designs are presented. Throughout the thesis, the applicability, effectiveness and computational efficiency of the control methods are evaluated via simulations using numerous, large-scale chemical process networks.
机译:大型化学过程系统的特征是高度非线性的行为以及在不同时间范围内发生的物理化学现象的耦合。实例包括流化催化裂化器,蒸馏塔,生化反应器以及化学过程网络,其中各个过程在较快的时间范围内演化而网络动力学在较慢的时间范围内演化。传统上,用于化学过程的基于模型的高级控制系统的设计遵循集中式范式,在该范式中,一个控制系统用于计算所有操纵输入的控制动作。尽管基于模型的过程控制的集中范式已经成功,但是当化工厂中的过程状态变量,可操作的输入和测量的数量变大时(在现代工厂中很常见),解决方案所需要的计算时间集中控制问题可能会大大增加,并且可能会阻碍集中控制系统的能力(特别是在使用非线性约束的基于优化的优化控制系统(例如模型预测控制-MPC)时)在过程动态和运行条件。解决此问题的一种可行替代方法是利用协作的分布式控制体系结构,在该体系结构中,通过以协调的方式在单独的处理器中解决多个控制(优化)问题来计算操纵输入。本文基于上述考虑,提出了本论文。设计用于非线性和两尺度过程网络的分布式模型预测控制系统的严格但实用的方法。首先回顾该主题的结果,本论文的第一部分通过基于Lyapunov的通用非线性过程系统的控制技术,介绍了两种顺序和迭代的分布式MPC体系结构的设计。在控制器及其通信策略的制定和设计中已明确解决了关键的实际问题,例如异步和延迟测量的反馈以及明确考虑经济因素的成本函数的使用。在论文的第二部分中,我们重点研究奇异摄动框架下非线性二次规模过程网络的模型预测控制系统。介绍了集中式和分布式MPC设计。在整个论文中,控制方法的适用性,有效性和计算效率是通过使用大量大规模化学过程网络进行的仿真评估的。

著录项

  • 作者

    Chen, Xianzhong.;

  • 作者单位

    University of California, Los Angeles.;

  • 授予单位 University of California, Los Angeles.;
  • 学科 Engineering General.;Engineering Chemical.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 238 p.
  • 总页数 238
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号