首页> 外文学位 >A physical MOSFET model applicable to extremely scaled CMOS IC TCAD.
【24h】

A physical MOSFET model applicable to extremely scaled CMOS IC TCAD.

机译:适用于超大规模CMOS IC TCAD的物理MOSFET模型。

获取原文
获取原文并翻译 | 示例

摘要

A process-based model (UFET) for deep-submicron bulk-silicon MOSFETs is developed and verified with numerical device simulations and measured data. The charge-based model is physical with accountings for the predominant short-channel (e.g., charge sharing, drain-induced threshold reduction and velocity saturation) and extremely scaled-technology (i.e., energy quantization and polysilicon-gate depletion) effects in MOSFETs. The key to UFET is the characterization of the bias-dependent two-dimensional regions near the source/drain junctions which can extend over a significant fraction of the metallurgical channel length. When these two-dimensional regions near the junctions are modeled, the physical charge-sheet model can be applied to the remaining "quasi-two-dimensional" channel length to define the channel current and terminal charges, without resorting to empiricism to account for the short-channel effects. Special attention paid to continuity in the derivation of the model formalism yields a physical C{dollar}sb{lcub}infty{rcub}{dollar} model applicable to analog and digital CMOS circuit design. The small number of physical, process-based parameters simplifies the model calibration, and renders the model suitable for predictive device/circuit simulation, statistical simulations and circuit sensitivity analyses based on known or presumed process variations.
机译:开发了用于深亚微米体硅MOSFET的基于过程的模型(UFET),并通过数值器件仿真和测量数据进行了验证。基于电荷的模型是物理的,并考虑了MOSFET中主要的短通道(例如电荷共享,漏极引起的阈值降低和速度饱和)和极端规模化的技术(例如能量量化和多晶硅栅极耗尽)效应。 UFET的关键在于表征源极/漏极结附近与偏置相关的二维区域,该区域可以延伸至冶金沟道长度的很大一部分。对靠近结点的这些二维区域进行建模时,可以将物理电荷表模型应用于剩余的“准二维”沟道长度,以定义沟道电流和终端电荷,而无需借助经验来解释短通道效应。在模型形式主义的推导中要特别注意连续性,这会产生适用于模拟和数字CMOS电路设计的物理C {dollar} sb {lcub} infty {rcub} {dollar}模型。少量的基于过程的物理参数简化了模型校准,并使模型适合于基于已知或假定的过程变化的预测性设备/电路仿真,统计仿真和电路灵敏度分析。

著录项

  • 作者

    Weiser, Douglas Aaron.;

  • 作者单位

    University of Florida.;

  • 授予单位 University of Florida.;
  • 学科 Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 1997
  • 页码 200 p.
  • 总页数 200
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 无线电电子学、电信技术;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号