首页> 外文学位 >Atomic-scale kinetic Monte Carlo simulations of diamond chemical vapor deposition.
【24h】

Atomic-scale kinetic Monte Carlo simulations of diamond chemical vapor deposition.

机译:金刚石化学气相沉积的原子尺度动力学蒙特卡洛模拟。

获取原文
获取原文并翻译 | 示例

摘要

Diamond's superb mechanical, thermal, optical, and electronic properties are ideally suited for use in protective coatings, thermal management components, cold cathode emitters, and high-performance electronic devices, among others. Diamond can be chemically vapor deposited (CVD) to produce coatings and thin films, but this technique is currently expensive and difficult to control, and the details of the molecular processes that lead to diamond deposition remain unclear. The goal of this work is to construct a tool by which the nano-scale processes that lead to diamond growth, and their effects on film properties, can be examined. This is accomplished through the development of a kinetic Monte Carlo simulation method that treats diamond deposition on the atomic length scale using established chemical reaction rate data as input, while addressing deposition time scales that correspond directly to real growth experiments. The impact of the atomic-scale surface reaction processes on the growth kinetics, surface morphologies, and defect densities of single crystal CVD diamond are examined. In this way, a clearer understanding of the connection between atomic-scale deposition processes and CVD diamond film properties can be obtained.; The growth kinetics and surface morphologies that develop during deposition are found to depend primarily on the details of the atomic surface features and their effects on bonding during deposition. The (110) and (111) surfaces facet under certain growth conditions. The (100) surface grows fastest and roughens, in contradiction to experimental observations. This can be rectified by the introduction of a mechanism for the preferential etching of monatomic islands on (100) facets, whereby the simulations predict slow-growing smooth (100) faces in accord with experimental observations.; The trapping of H atoms is enhanced at higher substrate temperatures where the flux of larger {dollar}rm Csb2Hsb2{dollar} molecules to the surface is high. Incorporation of sp{dollar}sp2{dollar} defects is highest for high-CH{dollar}sb4{dollar} feeds which generate less H, since H is required to convert sp2-bonded C on the surface to sp{dollar}sp3{dollar}-bonded material. Vacancy incorporation is not substantial. The ratio of simulated growth rate to defect concentration is maximized around 800-950{dollar}spcirc{dollar}C and 1% inlet CH{dollar}sb4,{dollar} for which experiments also produce the best quality CVD diamond.
机译:Diamond出色的机械,热,光学和电子性能非常适合用于保护涂层,热管理组件,冷阴极发射器和高性能电子设备等。可以通过化学气相沉积(CVD)金刚石来产生涂层和薄膜,但是该技术目前昂贵且难以控制,导致金刚石沉积的分子过程的细节仍然不清楚。这项工作的目的是构建一种工具,通过该工具可以检查导致钻石生长的纳米级工艺及其对薄膜性能的影响。这是通过开发一种动力学蒙特卡罗模拟方法来实现的,该方法使用已建立的化学反应速率数据作为输入来处理原子长度尺度上的金刚石沉积,同时处理直接对应于实际生长实验的沉积时间尺度。研究了原子级表面反应过程对单晶CVD金刚石生长动力学,表面形态和缺陷密度的影响。这样,可以更清楚地了解原子级沉积工艺与CVD金刚石膜性能之间的关系。发现在沉积过程中产生的生长动力学和表面形态主要取决于原子表面特征的细节及其对沉积过程中键合的影响。 (110)和(111)表面在某些生长条件下是小平面。与实验观察相反,(100)表面生长最快且变粗糙。可以通过引入优先腐蚀(100)面上的单原子岛的机制来纠正这种情况,从而根据实验结果,模拟预测缓慢生长的光滑(100)面。 H原子的俘获在较高的衬底温度下得以增强,其中较大的{rm} Csb2Hsb2 {dolal}分子向表面的通量较高。对于产生较少H的高CH {sdol4} sb4 {dollar}进料,sp {dollar} sp2 {dollar}缺陷的掺入率最高,因为需要H才能将表面上由sp2键合的C转化为sp {dollar} sp3 {美元}键材料。空缺并没有很大。模拟生长速率与缺陷浓度的比值在800-950 {C和1%入口CHssb4 {USD}左右达到最大,为此实验还生产了质量最好的CVD金刚石。

著录项

  • 作者

    Battaile, Corbett Chandler.;

  • 作者单位

    University of Michigan.;

  • 授予单位 University of Michigan.;
  • 学科 Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 1997
  • 页码 170 p.
  • 总页数 170
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 工程材料学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号